Qinghai Zhang , Pei Zhang , Min Yang , Yingxue Tian , Chunxia Feng , Wei Wei
{"title":"Identifications of three novel alleles of Serrate in Drosophila","authors":"Qinghai Zhang , Pei Zhang , Min Yang , Yingxue Tian , Chunxia Feng , Wei Wei","doi":"10.1016/j.cdev.2024.203908","DOIUrl":null,"url":null,"abstract":"<div><p>The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in <em>Drosophila</em>: Delta (Dl) and Serrate (Ser). A mutation <em>mf157</em> is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that <em>mf157</em> represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that <em>mf157</em> functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that <em>mf157</em> is a novel allele of the <em>Ser</em> gene. Subsequently, <em>mf553</em> and <em>mf167</em> are also identified as new alleles of <em>Ser</em> from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of <em>mf157</em>. In conclusion, we identify three fresh alleles of <em>Ser</em>. Our works supply additional genetic resources for further study of functions of <em>Ser</em> and Notch signaling regulation.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"177 ","pages":"Article 203908"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000093/pdfft?md5=b1f8832b2416076c695a254db66864b7&pid=1-s2.0-S2667290124000093-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290124000093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.