首页 > 最新文献

Cells and Development最新文献

英文 中文
LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS LUC7L2 通过 RRAS 加强 DNA 损伤修复,从而加速肝癌细胞的生长。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-11-19 DOI: 10.1016/j.cdev.2024.203976
Xinlei Liu , Sijie Xie , Xiaoxue Jiang , Shuting Song, Liyan Wang, Shujie Li, Dongdong Lu

Background & objectives

LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized.

Results

Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells in vitro and xenograft transplantation in vivo. The proliferation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (24th hour: P = 0.00043; 48th hour: P = 0.000017). The cellular colony formation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (25.18±6.94 % vs 67.63±9.57 %, P = 0.00009). The weight of transplanted tumors was significantly increased in the rLV-LUC7L2 group compared to rLV group (0.387±0.074 vs 0.958± 0.103 g, P = 0.00004). Moreover, LUC7L2 effects on epigenetic regulation based on H3K4me3 in human liver cancer cells. e,g, RRAS. Furthermore, LUC7L2 affects transcriptome and proteome in liver cancer. In particular, LUC7L2 enhances the modification ability of H3K4me3and RNAPolII on the promoter region of RRAS and then enhances the expression of RRAS in liver cancer. Strikingly, LUC7L2 increases the increases the DNA damage repair ability dependent on RRAS. Although the DNA damage repair ability was significantly increased in the rLV-LUC7L2 group compared to rLV group(1.868±0.181 vs 0.17±0.034, P = 0.0000022), it was not significantly changed in rLV-LUC7L2+rLV-shRNA RRAS group compared with rLV group(1.868±0.181 vs 1.798±0.313, P = 0.317). Importantly, LUC7L2 enhances the carcinogenic function dependent on RRAS. In particular, RRAS increased the DNA damage repair ability by enhancing the formation of DNA damage repair dependent on tri-methylation of histone H3 lysine 36 (H3K36me3).

Conclusions

It is implied that LUC7L2's role in liver cancer proliferation is largely dependent on RRAS. The first discovery provides a basis for the prevention and treatment of human liver cancer.
背景与目的:LUC7L2可能与U1 snRNP剪接体亚基一起参与非共识剪接供体位点的识别。然而,LUC7L2在人类肝癌发展过程中的详细特征和调控机制尚未得到很好的描述:结果:我们的研究结果表明,LUC7L2 可促进肝癌细胞的体外增殖和体内异种移植。与 rLV 组相比,rLV-LUC7L2 组的增殖能力明显提高(第 24 小时:P = 0.00043;第 48 小时:P = 0.000017)。与 rLV 组相比,rLV-LUC7L2 组的细胞集落形成能力明显提高(25.18±6.94 % vs 67.63±9.57 %,P = 0.00009)。此外,LUC7L2 对人类肝癌细胞(如 RRAS)中基于 H3K4me3 的表观遗传调控也有影响。此外,LUC7L2 还影响肝癌的转录组和蛋白质组。特别是,LUC7L2能增强H3K4me3和RNAPolⅡ对RRAS启动子区域的修饰能力,进而增强RRAS在肝癌中的表达。令人震惊的是,LUC7L2能提高依赖于RRAS的DNA损伤修复能力。虽然与rLV组相比,rLV-LUC7L2组的DNA损伤修复能力明显提高(1.868±0.181 vs 0.17±0.034,P = 0.0000022),但与rLV组相比,rLV-LUC7L2+rLV-shRNA RRAS组的DNA损伤修复能力没有明显变化(1.868±0.181 vs 1.798±0.313,P = 0.317)。重要的是,LUC7L2能增强依赖于RRAS的致癌功能。特别是,RRAS通过增强DNA损伤修复依赖组蛋白H3赖氨酸36的三甲基化(H3K36me3)的形成,提高了DNA损伤修复能力:结论:LUC7L2在肝癌增殖中的作用主要依赖于RRAS。这一首次发现为人类肝癌的预防和治疗提供了依据。
{"title":"LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS","authors":"Xinlei Liu ,&nbsp;Sijie Xie ,&nbsp;Xiaoxue Jiang ,&nbsp;Shuting Song,&nbsp;Liyan Wang,&nbsp;Shujie Li,&nbsp;Dongdong Lu","doi":"10.1016/j.cdev.2024.203976","DOIUrl":"10.1016/j.cdev.2024.203976","url":null,"abstract":"<div><h3>Background &amp; objectives</h3><div>LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized.</div></div><div><h3>Results</h3><div>Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells <em>in vitro and</em> xenograft transplantation <em>in vivo.</em> The proliferation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (24th hour: <em>P</em> = 0.00043; 48th hour: <em>P</em> = 0.000017). The cellular colony formation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (25.18±6.94 % <em>vs</em> 67.63±9.57 %, <em>P</em> = 0.00009). The weight of transplanted tumors was significantly increased in the rLV-LUC7L2 group compared to rLV group (0.387±0.074 <em>vs</em> 0.958± 0.103 g, <em>P</em> = 0.00004). Moreover, LUC7L2 effects on epigenetic regulation based on H3K4me3 in human liver cancer cells. e,g, RRAS. Furthermore, LUC7L2 affects transcriptome and proteome in liver cancer. In particular, LUC7L2 enhances the modification ability of H3K4me3and RNAPolII on the promoter region of RRAS and then enhances the expression of RRAS in liver cancer. Strikingly, LUC7L2 increases the increases the DNA damage repair ability dependent on RRAS. Although the DNA damage repair ability was significantly increased in the rLV-LUC7L2 group compared to rLV group(1.868±0.181 <em>vs</em> 0.17±0.034, <em>P</em> = 0.0000022), it was not significantly changed in rLV-LUC7L2+rLV-shRNA RRAS group compared with rLV group(1.868±0.181 <em>vs</em> 1.798±0.313, <em>P</em> = 0.317). Importantly, LUC7L2 enhances the carcinogenic function dependent on RRAS. In particular, RRAS increased the DNA damage repair ability by enhancing the formation of DNA damage repair dependent on tri-methylation of histone H3 lysine 36 (H3K36me3).</div></div><div><h3>Conclusions</h3><div>It is implied that LUC7L2's role in liver cancer proliferation is largely dependent on RRAS. The first discovery provides a basis for the prevention and treatment of human liver cancer.</div></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203976"},"PeriodicalIF":3.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blastoid: The future of human development in the laboratory Blastoid:实验室中人类发展的未来。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-11-14 DOI: 10.1016/j.cdev.2024.203975
Hyung Kyu Choi, Sung-Hwan Moon
Research on early human development is crucial for understanding the origins of life and mechanisms underlying disease onset. However, these studies have significant challenges owing to ethical restrictions and technical limitations. Stem cell technology advancement has led to the development of blastoids to overcome these challenges.” Blastoids are three-dimensional structures produced by pluripotent stem cells (PSCs) that resemble the blastocyst stage of human embryos. Research on blastoids can enhance our understanding of early human development and drive innovations in regenerative medicine and disease modeling.
This review outlines the background of blastoid development and highlights the limitations of existing organoid research. It presents developments in blastoid research, from previous studies using animal models to the latest developments using human stem cell-derived blastoids in early human development studies. Additionally, this review provides a comparative analysis of the methods used to develop blastoids across various studies, evaluating their potential as ethical alternatives for regenerative medicine, human developmental biology, and embryonic research. It further assesses the ethical and social considerations surrounding blastoid research, the current strategies to address these concerns, and the potential long-term impact on science and medicine.
We aimed to provide a comprehensive understanding of the current trends in blastoid research, offer new insights into early human development, and suggest novel directions and approaches for researchers.
人类早期发育研究对于了解生命起源和疾病发病机制至关重要。然而,由于伦理限制和技术局限,这些研究面临着巨大挑战。干细胞技术的进步促使人们开发出blastoids来克服这些挑战"。囊胚是由多能干细胞(PSC)产生的三维结构,类似于人类胚胎的囊胚阶段。对胚泡的研究可以增进我们对人类早期发育的了解,推动再生医学和疾病建模的创新。本综述概述了类囊体发育的背景,并强调了现有类器官研究的局限性。综述介绍了类囊体研究的发展,从以前使用动物模型进行的研究,到现在在人类早期发育研究中使用人类干细胞衍生类囊体的最新进展。此外,本综述还对各种研究中开发类囊体的方法进行了比较分析,评估了类囊体作为再生医学、人类发育生物学和胚胎研究的伦理替代品的潜力。它进一步评估了围绕类囊体研究的伦理和社会考虑因素、解决这些问题的当前策略以及对科学和医学的潜在长期影响。我们的目标是全面了解类囊体研究的当前趋势,为人类早期发育提供新的见解,并为研究人员提出新的方向和方法。
{"title":"Blastoid: The future of human development in the laboratory","authors":"Hyung Kyu Choi,&nbsp;Sung-Hwan Moon","doi":"10.1016/j.cdev.2024.203975","DOIUrl":"10.1016/j.cdev.2024.203975","url":null,"abstract":"<div><div>Research on early human development is crucial for understanding the origins of life and mechanisms underlying disease onset. However, these studies have significant challenges owing to ethical restrictions and technical limitations. Stem cell technology advancement has led to the development of blastoids to overcome these challenges.” Blastoids are three-dimensional structures produced by pluripotent stem cells (PSCs) that resemble the blastocyst stage of human embryos. Research on blastoids can enhance our understanding of early human development and drive innovations in regenerative medicine and disease modeling.</div><div>This review outlines the background of blastoid development and highlights the limitations of existing organoid research. It presents developments in blastoid research, from previous studies using animal models to the latest developments using human stem cell-derived blastoids in early human development studies. Additionally, this review provides a comparative analysis of the methods used to develop blastoids across various studies, evaluating their potential as ethical alternatives for regenerative medicine, human developmental biology, and embryonic research. It further assesses the ethical and social considerations surrounding blastoid research, the current strategies to address these concerns, and the potential long-term impact on science and medicine.</div><div>We aimed to provide a comprehensive understanding of the current trends in blastoid research, offer new insights into early human development, and suggest novel directions and approaches for researchers.</div></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203975"},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis 针对Wnt依赖性结肠癌的新治疗策略,以大蛋白细胞增殖为目标。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-11-09 DOI: 10.1016/j.cdev.2024.203974
Nydia Tejeda-Muñoz , Grace Binder , Kuo-Ching Mei
Aberrations in the Wnt signaling pathway, particularly mutations in genes like APC and β-catenin, are pivotal in initiating and driving the progression of colorectal cancer (CRC), establishing this pathway as a crucial target for therapeutic intervention. Membrane trafficking plays a key role in regulating Wnt signaling by controlling the activation, modulation, and secretion of essential signaling molecules that contribute to CRC progression. This review explores the connection between membrane trafficking and Wnt signaling, with a specific focus on macropinocytosis—an endocytic process involved in nutrient uptake that also plays a role in Wnt signal regulation. The relationship between Wnt signaling and macropinocytosis, critical in both embryonic development and cancer onset, reveals a new dimension for therapeutic intervention. Targeting Wnt signaling through the modulation of macropinocytosis and broader membrane trafficking pathways presents a promising therapeutic strategy, with several candidates already in early clinical trials. These emerging approaches underscore the potential of targeting Wnt and its associated membrane trafficking processes for CRC treatment, aligning with the development of innovative therapies.
Wnt 信号通路的异常,尤其是 APC 和 β-catenin 等基因的突变,是引发和推动结直肠癌(CRC)进展的关键因素,从而使这一通路成为治疗干预的关键靶点。膜贩运通过控制导致 CRC 进展的重要信号分子的激活、调节和分泌,在调节 Wnt 信号转导方面发挥着关键作用。这篇综述探讨了膜转运与 Wnt 信号转导之间的联系,并特别关注大蛋白细胞增殖--一种参与营养摄取的内细胞过程,也在 Wnt 信号调节中发挥作用。Wnt 信号与大蛋白细胞增殖之间的关系对胚胎发育和癌症发病都至关重要,它为治疗干预揭示了一个新的层面。通过调节大磷细胞和更广泛的膜转运途径来靶向 Wnt 信号是一种很有前景的治疗策略,目前已有几种候选药物进入了早期临床试验阶段。这些新出现的方法强调了靶向 Wnt 及其相关膜转运过程治疗 CRC 的潜力,与创新疗法的发展相一致。
{"title":"Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis","authors":"Nydia Tejeda-Muñoz ,&nbsp;Grace Binder ,&nbsp;Kuo-Ching Mei","doi":"10.1016/j.cdev.2024.203974","DOIUrl":"10.1016/j.cdev.2024.203974","url":null,"abstract":"<div><div>Aberrations in the Wnt signaling pathway, particularly mutations in genes like APC and β-catenin, are pivotal in initiating and driving the progression of colorectal cancer (CRC), establishing this pathway as a crucial target for therapeutic intervention. Membrane trafficking plays a key role in regulating Wnt signaling by controlling the activation, modulation, and secretion of essential signaling molecules that contribute to CRC progression. This review explores the connection between membrane trafficking and Wnt signaling, with a specific focus on macropinocytosis—an endocytic process involved in nutrient uptake that also plays a role in Wnt signal regulation. The relationship between Wnt signaling and macropinocytosis, critical in both embryonic development and cancer onset, reveals a new dimension for therapeutic intervention. Targeting Wnt signaling through the modulation of macropinocytosis and broader membrane trafficking pathways presents a promising therapeutic strategy, with several candidates already in early clinical trials. These emerging approaches underscore the potential of targeting Wnt and its associated membrane trafficking processes for CRC treatment, aligning with the development of innovative therapies.</div></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203974"},"PeriodicalIF":3.9,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord 果蝇胚胎腹侧神经索的进化和机械原理。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-26 DOI: 10.1016/j.cdev.2024.203973
Katerina Karkali, Enrique Martín-Blanco
The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS. In most arthropods, the NC follows a specific topological plan and consists of a fixed number of neuromeres (thoracic and abdominal ganglia with commissural interconnections and a single terminal ganglion). The number, spacing, and fusion of neuromeres are species-specific and can change during embryogenesis or post-embryonic life. During Drosophila embryogenesis, the NC condenses along the Anterior-Posterior (AP) axis in a stereotypical manner, bringing neuromeres closer together. This process has revealed several key parameters, including its morphogenetic mechanics, the roles of various cellular, molecular, and structural components, and the functional purpose of its balanced design. The embryonic NC serves as a valuable model for investigating the ancient mechanisms underlying the structural organization, sensory integration, and motor coordination of the CNS. While many aspects of ganglionic fusion remain unknown, ongoing research promises to provide a more comprehensive understanding of the mechanical and evolutionary principles that govern it.
通信回路的建立需要将信号源和目标直接或间接地联系起来。中枢神经系统(CNS)解读环境并做出精确反应的能力取决于其神经网络的功能效率,而神经网络的功能效率又取决于其组成成分(主要是神经元和神经胶质细胞)的三维空间组织。在整个进化过程中,感觉整合和运动反应协调随着近地中枢神经系统中大脑和神经索(NC)的合并而联系在一起。在大多数节肢动物中,NC 遵循特定的拓扑结构,由固定数量的神经元组成(胸神经节和腹神经节与神经节之间相互连接,并有一个末端神经节)。神经元的数量、间距和融合具有物种特异性,在胚胎发生或胚胎后期会发生变化。在果蝇胚胎发育过程中,NC沿前后(AP)轴以刻板的方式收缩,使神经元更紧密地结合在一起。这一过程揭示了几个关键参数,包括其形态发生机制,各种细胞、分子和结构成分的作用,以及其平衡设计的功能目的。胚胎数控系统是研究中枢神经系统的结构组织、感觉整合和运动协调的古老机制的宝贵模型。尽管神经节融合的许多方面仍不为人所知,但正在进行的研究有望让人们更全面地了解支配神经节融合的机械和进化原理。
{"title":"The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord","authors":"Katerina Karkali,&nbsp;Enrique Martín-Blanco","doi":"10.1016/j.cdev.2024.203973","DOIUrl":"10.1016/j.cdev.2024.203973","url":null,"abstract":"<div><div>The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS. In most arthropods, the NC follows a specific topological plan and consists of a fixed number of neuromeres (thoracic and abdominal ganglia with commissural interconnections and a single terminal ganglion). The number, spacing, and fusion of neuromeres are species-specific and can change during embryogenesis or post-embryonic life. During <em>Drosophila</em> embryogenesis, the NC condenses along the Anterior-Posterior (AP) axis in a stereotypical manner, bringing neuromeres closer together. This process has revealed several key parameters, including its morphogenetic mechanics, the roles of various cellular, molecular, and structural components, and the functional purpose of its balanced design. The embryonic NC serves as a valuable model for investigating the ancient mechanisms underlying the structural organization, sensory integration, and motor coordination of the CNS. While many aspects of ganglionic fusion remain unknown, ongoing research promises to provide a more comprehensive understanding of the mechanical and evolutionary principles that govern it.</div></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203973"},"PeriodicalIF":3.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional regulation of postnatal aortic development 出生后主动脉发育的转录调控。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-18 DOI: 10.1016/j.cdev.2024.203971
D. Weiss , N. Yeung , A.B. Ramachandra , J.D. Humphrey
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
在出生后的发育过程中,主动脉的几何形状、组成和机械特性发生了巨大变化。这些变化必然是由转录变化驱动的,既有基因编程变化,也有机械响应变化,但目前还没有对转录特征和生物力学表型的时程变化进行仔细比较。在这里,我们发现,正常出生后小鼠主动脉基因表达差异最大的时期发生在三周龄断奶之前,但此后许多转录本都发生了重要变化。我们发现了六种一般的时间模式,包括转录本单调地下降到较低或上升到较高的稳态值,以及在断奶前或断奶附近达到峰值或骤降的转录本。我们发现,各个分组中的不同转录本随着时间的推移具有很好的相关性,而且这些分组的子集与预期参与机械感应的不同生物力学指标的发育进程具有很好的相关性。特别是,弹性蛋白和弹性蛋白相关糖蛋白基因的表达往往与收缩应力与舒张应力之比密切相关,而胶原纤维基因则与收缩应力的日变化率密切相关,机械感应蛋白基因往往与收缩应力本身密切相关。我们的结论是,具有不同时间表达模式的不同基因分组与心壁力学的不同测量结果有很好的相关性,因此强调了对出生后发育进行与年龄相关的基因特异性计算建模的必要性。
{"title":"Transcriptional regulation of postnatal aortic development","authors":"D. Weiss ,&nbsp;N. Yeung ,&nbsp;A.B. Ramachandra ,&nbsp;J.D. Humphrey","doi":"10.1016/j.cdev.2024.203971","DOIUrl":"10.1016/j.cdev.2024.203971","url":null,"abstract":"<div><div>The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.</div></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203971"},"PeriodicalIF":3.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of functional trophoblast organoids from trophoblast cells of bovine placenta 从牛胎盘滋养层细胞中建立功能性滋养层细胞器。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-09-05 DOI: 10.1016/j.cdev.2024.203970
Bingying Liu , Siqi Ren , Hong An , Yixuan Liang , Xihui Sheng , Xiaolong Qi , Longfei Xiao , Xiangguo Wang

The placenta is an organ that plays a vital role in successful pregnancies, and the failure of early placentation is a significant factor leading to abortion in ruminant species. However, the mechanisms involved in the development and differentiation of bovine placenta remain elusive due to the lack of suitable in vitro placental models. This study aimed to develop an effective method for generating the bovine functional trophoblast organoids by assembling bovine primary trophoblast cells (PBTCs) from the placenta or immortalized bovine placental trophoblast (BTCs) in a 3D culture system in vitro. PBTCs isolated from the 3-month-gestation placenta and BTCs rapidly proliferated and exhibited typical epithelioid morphology in the modified trophoblast organoid medium (TOM) for bovine. Furthermore, PBTCs and BTCs proliferating in the modified TOM were both CK7- and E-cadherin-positive. Both PBTCs or BTCs embedded into Matrigel droplets overlaid with modified TOM proliferated and formed trophoblast organoids after 15 days of culture. Moreover, the expression of syntrophoblast marker genes, including CD71, CD46, and chorionic somatomammotropin hormone 1 (CSH1), was detectable in both organoids derived from different types of trophoblast cells. Notably, the protein expression levels of various genes implicated in the establishment of early pregnancy in endometrial epithelium cells (EECs) was increased following coculture with bovine trophoblast organoids. Collectively, the bovine trophoblast organoids established in our study could serve as robust models for elucidating the essential physical functions of the placenta and the causes of pregnancy failures related to the placenta developmental disorders during early bovine pregnancy.

胎盘是对成功妊娠起着重要作用的器官,早期胎盘植入失败是导致反刍动物流产的一个重要因素。然而,由于缺乏合适的体外胎盘模型,牛胎盘的发育和分化机制仍然难以捉摸。本研究旨在开发一种有效的方法,通过在体外三维培养系统中组装来自胎盘的牛原代滋养细胞(PBTCs)或永生化的牛胎盘滋养细胞(BTCs),生成牛功能性滋养细胞器质。从妊娠 3 个月的胎盘中分离出的 PBTC 和 BTC 在改良的牛滋养细胞类器官培养基(TOM)中迅速增殖并呈现出典型的上皮样形态。此外,在改良 TOM 中增殖的 PBTC 和 BTC 均呈 CK7 和 E-cadherin 阳性。经 15 天培养后,包埋在覆盖有改良 TOM 的 Matrigel 液滴中的 PBTCs 或 BTCs 都能增殖并形成滋养层细胞器。此外,在来自不同类型滋养层细胞的两种器官组织中,都能检测到合成母细胞标记基因的表达,包括 CD71、CD46 和绒毛体液素激素 1(CSH1)。值得注意的是,子宫内膜上皮细胞(EECs)与牛滋养层细胞器官组织共培养后,与早孕建立有关的各种基因的蛋白表达水平均有所提高。总之,我们的研究建立的牛滋养层细胞器官组织可作为一个强大的模型,用于阐明胎盘的基本物理功能以及与牛妊娠早期胎盘发育障碍有关的妊娠失败的原因。
{"title":"Establishment of functional trophoblast organoids from trophoblast cells of bovine placenta","authors":"Bingying Liu ,&nbsp;Siqi Ren ,&nbsp;Hong An ,&nbsp;Yixuan Liang ,&nbsp;Xihui Sheng ,&nbsp;Xiaolong Qi ,&nbsp;Longfei Xiao ,&nbsp;Xiangguo Wang","doi":"10.1016/j.cdev.2024.203970","DOIUrl":"10.1016/j.cdev.2024.203970","url":null,"abstract":"<div><p>The placenta is an organ that plays a vital role in successful pregnancies, and the failure of early placentation is a significant factor leading to abortion in ruminant species. However, the mechanisms involved in the development and differentiation of bovine placenta remain elusive due to the lack of suitable <em>in vitro</em> placental models. This study aimed to develop an effective method for generating the bovine functional trophoblast organoids by assembling bovine primary trophoblast cells (PBTCs) from the placenta or immortalized bovine placental trophoblast (BTCs) in a 3D culture system <em>in vitro</em>. PBTCs isolated from the 3-month-gestation placenta and BTCs rapidly proliferated and exhibited typical epithelioid morphology in the modified trophoblast organoid medium (TOM) for bovine. Furthermore, PBTCs and BTCs proliferating in the modified TOM were both CK7- and E-cadherin-positive. Both PBTCs or BTCs embedded into Matrigel droplets overlaid with modified TOM proliferated and formed trophoblast organoids after 15 days of culture. Moreover, the expression of syntrophoblast marker genes, including CD71, CD46, and chorionic somatomammotropin hormone 1 (CSH1), was detectable in both organoids derived from different types of trophoblast cells. Notably, the protein expression levels of various genes implicated in the establishment of early pregnancy in endometrial epithelium cells (EECs) was increased following coculture with bovine trophoblast organoids. Collectively, the bovine trophoblast organoids established in our study could serve as robust models for elucidating the essential physical functions of the placenta and the causes of pregnancy failures related to the placenta developmental disorders during early bovine pregnancy.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203970"},"PeriodicalIF":3.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish 扭曲细胞流促进斑马鱼体节的三维形态发生
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-08-26 DOI: 10.1016/j.cdev.2024.203969
Harunobu Kametani , Yue Tong , Atsuko Shimada , Hiroyuki Takeda , Takamichi Sushida , Masakazu Akiyama , Toru Kawanishi

Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements—in horizontal and dorsal directions—that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.

组织伸长是构建复杂胚胎结构的基本形态发生过程。在斑马鱼中,体节在发育的几个小时内迅速向背腹两个方向伸长,并将其长方体形状转变为 V 形。尽管其意义重大,但直接导致体节伸长的细胞行为尚未以单细胞分辨率进行研究。在这里,我们利用光片显微镜描述了构成体节背半部分的所有细胞在三维空间中的运动和形状。我们发现了在单个细胞内同时发生的两种细胞运动--水平方向和背侧方向,从而在体节伸长过程中形成了复杂、扭曲的细胞流。对Sdf1信号传导的化学抑制破坏了这两个方向的集体运动,并抑制了体节的伸长,这表明Sdf1信号传导对细胞流动至关重要。此外,三维计算模型表明,水平细胞旋转加速了体节沿背腹轴的垂直伸长。总之,我们的研究对细胞集体迁移在组织形态发生中的作用提供了新的见解,而组织形态发生是在胚胎的三维空间中动态进行的。
{"title":"Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish","authors":"Harunobu Kametani ,&nbsp;Yue Tong ,&nbsp;Atsuko Shimada ,&nbsp;Hiroyuki Takeda ,&nbsp;Takamichi Sushida ,&nbsp;Masakazu Akiyama ,&nbsp;Toru Kawanishi","doi":"10.1016/j.cdev.2024.203969","DOIUrl":"10.1016/j.cdev.2024.203969","url":null,"abstract":"<div><p>Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements—in horizontal and dorsal directions—that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203969"},"PeriodicalIF":3.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000792/pdfft?md5=3bab0e18ddc2792fe0af0f10dde496aa&pid=1-s2.0-S2667290124000792-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized structure and function of the apical extracellular matrix at sense organs 感觉器官顶端细胞外基质的特殊结构和功能。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-25 DOI: 10.1016/j.cdev.2024.203942
Wendy Fung , Irina Kolotuev , Maxwell G. Heiman

Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.

覆盖人体每个表面的细胞外基质(aECM)具有组织特异性结构,可执行专门的功能。这一点在感觉器官中尤为突出,因为细胞外基质构成了感觉神经元与环境之间的界面,因此在如何接收感觉刺激方面起着至关重要的作用。在这里,我们回顾了各感觉器官中 aECM 的非凡适应性,并讨论了蛋白质组成和基质结构的差异如何有助于感知机械力(触毛、钟状感觉器和耳蜗的腱膜)、味道和气味(昆虫的单孔味觉感觉器和多孔嗅觉感觉器,以及脊椎动物的唾液和嗅觉粘液)以及光线(节肢动物和软体动物的角质层衍生透镜)。我们总结了将线虫作为模型来理解组织特异性结构和功能特化的线虫的优势,在线虫中,明确的感觉器官与独特的 aECM 相关联。最后,我们综合了线虫和果蝇的最新研究成果,将其归纳为 aECM 模式化的概念框架,包括涉及瞬时细胞或基质支架、机械拉力或推力以及局部分泌或内吞的机制。
{"title":"Specialized structure and function of the apical extracellular matrix at sense organs","authors":"Wendy Fung ,&nbsp;Irina Kolotuev ,&nbsp;Maxwell G. Heiman","doi":"10.1016/j.cdev.2024.203942","DOIUrl":"10.1016/j.cdev.2024.203942","url":null,"abstract":"<div><p>Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using <em>C. elegans,</em> in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in <em>C. elegans</em> and <em>Drosophila</em> into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"179 ","pages":"Article 203942"},"PeriodicalIF":3.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000433/pdfft?md5=a5838e5289442c44b0d30468566aa998&pid=1-s2.0-S2667290124000433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a fibronectin-binding protein signature associated with idiopathic pulmonary fibrosis 鉴定与特发性肺纤维化相关的纤维连接蛋白结合蛋白特征。
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-20 DOI: 10.1016/j.cdev.2024.203941
Yu Sun , Benjamin King , Aaron J. Hamlin , Mersedeh Saniepay , Kirill Gorshkov , Gregory Barker , Milinda Ziegler , Shilpaa Mukundan , Mary Ellen Cvijic , Jean E. Schwarzbauer

The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics. The ECM protein fibronectin (FN) is upregulated in fibrotic conditions and other ECM proteins depend on assembly of a FN foundational ECM for their matrix incorporation. We used cell culture and in vivo models to investigate the role of FN in the progression of lung fibrosis. We confirmed that normal human lung fibroblasts (NHLFs) treated with transforming growth factor-beta (TGF-β) to stimulate fibrotic gene expression significantly increased both FN expression and its assembly into a matrix. We found that levels of alternatively spliced EDA and EDB exons were proportional to the increase in total FN RNA and protein showing that inclusion of these exons is not enhanced by TGF-β stimulation. RNA-sequencing identified 43 core matrisome genes that were significantly up- or down-regulated by TGF-β treatment and a Luminex immunoassay demonstrated increased levels of ECM proteins in conditioned medium of TGF-β-treated NHLFs. Interestingly, among the regulated core matrisome genes, 16 encode known FN-binding proteins and, of these, insulin-like growth factor binding protein 3 (IGFBP3) was most highly up-regulated. To link the NHLF results with in vivo disease, we analyzed lung tissue and bronchoalveolar lavage fluid from bleomycin-treated mice and found dramatically higher levels of FN and the FN-binding proteins IGFBP3, tenascin-C, and type I collagen in fibrotic conditions compared to controls. Altogether, our data identify a set of FN-binding proteins whose upregulation is characteristic of IPF and suggest that FN provides the foundational matrix for deposition of these proteins as fibrosis develops.

细胞外基质(ECM)是组织的重要组成部分,它为细胞提供结构和信号支持。细胞外基质的失调和积累会导致纤维化,而纤维化是许多疾病的主要临床难题,目前几乎没有有效的治疗方法。了解纤维化的关键分子启动因子不仅对诊断有用,还能为治疗提供潜在靶点。纤维化条件下,ECM 蛋白纤连蛋白(FN)上调,其他 ECM 蛋白的基质结合依赖于 FN 基础 ECM 的组装。我们利用细胞培养和体内模型研究了 FN 在肺纤维化进展过程中的作用。我们证实,用转化生长因子-β(TGF-β)处理正常人肺成纤维细胞(NHLFs)以刺激纤维化基因的表达,可显著增加 FN 的表达及其在基质中的组装。我们发现,交替剪接的 EDA 和 EDB 外显子的水平与 FN 总 RNA 和蛋白质的增加成正比,这表明这些外显子的包含并不会因 TGF-β 的刺激而增强。RNA 测序确定了 43 个受 TGF-β 处理而显著上调或下调的核心基质组基因,Luminex 免疫测定表明,TGF-β 处理的 NHLFs 条件培养基中的 ECM 蛋白水平有所增加。有趣的是,在受调控的核心基质组基因中,16 个基因编码已知的 FN 结合蛋白,其中胰岛素样生长因子结合蛋白 3 (IGFBP3) 的上调幅度最大。为了将 NHLF 结果与体内疾病联系起来,我们分析了博莱霉素处理过的小鼠的肺组织和支气管肺泡灌洗液,发现与对照组相比,纤维化条件下 FN 和 FN 结合蛋白 IGFBP3、tenascin-C 和 I 型胶原的水平显著升高。总之,我们的数据确定了一组 FN 结合蛋白,它们的上调是 IPF 的特征,并表明随着纤维化的发展,FN 为这些蛋白的沉积提供了基础基质。
{"title":"Identification of a fibronectin-binding protein signature associated with idiopathic pulmonary fibrosis","authors":"Yu Sun ,&nbsp;Benjamin King ,&nbsp;Aaron J. Hamlin ,&nbsp;Mersedeh Saniepay ,&nbsp;Kirill Gorshkov ,&nbsp;Gregory Barker ,&nbsp;Milinda Ziegler ,&nbsp;Shilpaa Mukundan ,&nbsp;Mary Ellen Cvijic ,&nbsp;Jean E. Schwarzbauer","doi":"10.1016/j.cdev.2024.203941","DOIUrl":"10.1016/j.cdev.2024.203941","url":null,"abstract":"<div><p>The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics. The ECM protein fibronectin (FN) is upregulated in fibrotic conditions and other ECM proteins depend on assembly of a FN foundational ECM for their matrix incorporation. We used cell culture and in vivo models to investigate the role of FN in the progression of lung fibrosis. We confirmed that normal human lung fibroblasts (NHLFs) treated with transforming growth factor-beta (TGF-β) to stimulate fibrotic gene expression significantly increased both FN expression and its assembly into a matrix. We found that levels of alternatively spliced EDA and EDB exons were proportional to the increase in total FN RNA and protein showing that inclusion of these exons is not enhanced by TGF-β stimulation. RNA-sequencing identified 43 core matrisome genes that were significantly up- or down-regulated by TGF-β treatment and a Luminex immunoassay demonstrated increased levels of ECM proteins in conditioned medium of TGF-β-treated NHLFs. Interestingly, among the regulated core matrisome genes, 16 encode known FN-binding proteins and, of these, insulin-like growth factor binding protein 3 (IGFBP3) was most highly up-regulated. To link the NHLF results with in vivo disease, we analyzed lung tissue and bronchoalveolar lavage fluid from bleomycin-treated mice and found dramatically higher levels of FN and the FN-binding proteins IGFBP3, tenascin-C, and type I collagen in fibrotic conditions compared to controls. Altogether, our data identify a set of FN-binding proteins whose upregulation is characteristic of IPF and suggest that FN provides the foundational matrix for deposition of these proteins as fibrosis develops.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"179 ","pages":"Article 203941"},"PeriodicalIF":3.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic signatures of trophoblast lineage and their biological functions 滋养层细胞系的表观遗传特征及其生物学功能
IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-26 DOI: 10.1016/j.cdev.2024.203934

Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.

滋养层细胞在胚胎植入和与母体子宫的相互作用中发挥着至关重要的作用。滋养层细胞系发育成胎盘的重要组成部分,胎盘是一个临时的胚外器官,在发育过程中能够经历独特的表观遗传事件。滋养层特异性表观遗传特征在调控胎盘发育过程中的关键作用已经为人所知,这极大地推动了我们对滋养层特性和品系发育的了解。科学工作正在揭示滋养层细胞特异性表观遗传特征如何在滋养层细胞系发育过程中介导特定阶段的基因调控程序。这些表观遗传特征对囊胚形成、胎盘发育以及胚胎和胎儿的生长和存活都有重大影响。在进化过程中,滋养层细胞系中的 DNA 低甲基化是保守的,而在表观遗传动态控制和基因组印记景观方面存在显著差异。科学家们利用小鼠和人类多能滋养层细胞作为体外模型,重现了胎盘发育的重要表观遗传过程。在这里,我们回顾了滋养层细胞系的表观遗传学特征及其生物学功能,以加深我们对胎盘进化、发育和功能的理解。
{"title":"Epigenetic signatures of trophoblast lineage and their biological functions","authors":"","doi":"10.1016/j.cdev.2024.203934","DOIUrl":"10.1016/j.cdev.2024.203934","url":null,"abstract":"<div><p><span>Trophoblasts play a crucial role in embryo implantation<span> and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development<span> has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory<span><span> programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, </span>DNA hypomethylation<span> in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as </span></span></span></span></span><em>in vitro</em><span> models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.</span></p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"179 ","pages":"Article 203934"},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cells and Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1