FiPhA: an open-source platform for fiber photometry analysis.

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2024-01-01 Epub Date: 2024-02-23 DOI:10.1117/1.NPh.11.1.014305
Matthew F Bridge, Leslie R Wilson, Sambit Panda, Korey D Stevanovic, Ayland C Letsinger, Sandra McBride, Jesse D Cushman
{"title":"FiPhA: an open-source platform for fiber photometry analysis.","authors":"Matthew F Bridge, Leslie R Wilson, Sambit Panda, Korey D Stevanovic, Ayland C Letsinger, Sandra McBride, Jesse D Cushman","doi":"10.1117/1.NPh.11.1.014305","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming.</p><p><strong>Aim: </strong>We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation.</p><p><strong>Approach: </strong>FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface.</p><p><strong>Results: </strong>This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events, and quality control features.</p><p><strong>Conclusions: </strong>FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based FP data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to FP analysis.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 1","pages":"014305"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.1.014305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming.

Aim: We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation.

Approach: FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface.

Results: This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events, and quality control features.

Conclusions: FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based FP data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to FP analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FiPhA:用于光纤光度分析的开源平台。
意义重大:纤维光度法(FP)是现代行为神经科学中广泛使用的一种技术,它利用基因编码的荧光传感器来监测清醒动物的神经活动和神经递质释放。目的:我们提出了纤维光度分析(FiPhA)应用程序,它是一种通用的 FP 分析应用程序。目的:我们提出了光纤测光分析(FiPhA)应用程序,它是一款通用的 FP 分析应用程序,目的是开发一个适用于各种测光方法的管道,包括光谱分辨、基于相机和锁定解调:方法:FiPhA 是使用 R Shiny 框架开发的,在用户友好的界面中提供了交互式可视化、质量控制和批处理功能:结果:该应用程序简化并精简了分析流程,从而减少了人力和时间需求。它提供了交互式可视化、事件触发平均处理、过滤行为事件的强大工具以及质量控制功能:FiPhA 是行为神经科学家处理离散、基于事件的 FP 数据的重要工具。它解决了与分析和研究此类数据相关的难题,提供了一个强大且用户友好的解决方案,而无需手工设计定制分析管道的复杂性。因此,该应用程序有助于实现 FP 分析方法的标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1