Matthew F Bridge, Leslie R Wilson, Sambit Panda, Korey D Stevanovic, Ayland C Letsinger, Sandra McBride, Jesse D Cushman
{"title":"FiPhA: an open-source platform for fiber photometry analysis.","authors":"Matthew F Bridge, Leslie R Wilson, Sambit Panda, Korey D Stevanovic, Ayland C Letsinger, Sandra McBride, Jesse D Cushman","doi":"10.1117/1.NPh.11.1.014305","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming.</p><p><strong>Aim: </strong>We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation.</p><p><strong>Approach: </strong>FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface.</p><p><strong>Results: </strong>This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events, and quality control features.</p><p><strong>Conclusions: </strong>FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based FP data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to FP analysis.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 1","pages":"014305"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.1.014305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming.
Aim: We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation.
Approach: FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface.
Results: This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events, and quality control features.
Conclusions: FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based FP data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to FP analysis.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.