Vasily T. Lebedev , Yuri V. Kulvelis , Alexey S. Odinokov , Oleg N. Primachenko , Svetlana V. Kononova , Elena M. Ivan'kova , Vera A. Orlova , Natalia P. Yevlampieva , Elena A. Marinenko , Iosif V. Gofman , Alexandr V. Shvidchenko , Georgy S. Peters
{"title":"Proton-conducting membranes based on Nafion® synthesized by using nanodiamond platform","authors":"Vasily T. Lebedev , Yuri V. Kulvelis , Alexey S. Odinokov , Oleg N. Primachenko , Svetlana V. Kononova , Elena M. Ivan'kova , Vera A. Orlova , Natalia P. Yevlampieva , Elena A. Marinenko , Iosif V. Gofman , Alexandr V. Shvidchenko , Georgy S. Peters","doi":"10.1016/j.memlet.2024.100070","DOIUrl":null,"url":null,"abstract":"<div><p>New method of emulsion synthesis of Nafion®-type copolymer composition by using nanodiamond platform has been proposed and implemented. Produced polymeric coagulate saturated with diamonds (4.1 % wt.) possessed increased ionic capacity of the copolymer comparative to the analogue without diamonds. SEM patterns for coagulate membranes showed labyrinthine structures with diamonds integrated into copolymer without any segregation. This structuring provided necessary elastic and strength properties of new type membranes for hydrogen fuel cells. In new membranes synchrotron experiments exhibited a network of ionic channels which ensured a proton conductivity by one order of magnitude higher than that for the analogue produced of premade components.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"4 1","pages":"Article 100070"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421224000047/pdfft?md5=6128272ce77383dfbee7ec2b18078277&pid=1-s2.0-S2772421224000047-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421224000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
New method of emulsion synthesis of Nafion®-type copolymer composition by using nanodiamond platform has been proposed and implemented. Produced polymeric coagulate saturated with diamonds (4.1 % wt.) possessed increased ionic capacity of the copolymer comparative to the analogue without diamonds. SEM patterns for coagulate membranes showed labyrinthine structures with diamonds integrated into copolymer without any segregation. This structuring provided necessary elastic and strength properties of new type membranes for hydrogen fuel cells. In new membranes synchrotron experiments exhibited a network of ionic channels which ensured a proton conductivity by one order of magnitude higher than that for the analogue produced of premade components.