Green synthesis, characterization, and application of iron and molybdenum nanoparticles and their composites for enhancing the growth of Solanum lycopersicum
Maria Habib, Hina Fatima, Tauseef Anwar, Huma Qureshi, Samson O. Aisida, Ishaq Ahmad, Iftikhar Ali, Amal M. Al-Mohaimeed, Mohamed S. Elshikh, Sarah Abdul Razak, Asif Kamal
{"title":"Green synthesis, characterization, and application of iron and molybdenum nanoparticles and their composites for enhancing the growth of Solanum lycopersicum","authors":"Maria Habib, Hina Fatima, Tauseef Anwar, Huma Qureshi, Samson O. Aisida, Ishaq Ahmad, Iftikhar Ali, Amal M. Al-Mohaimeed, Mohamed S. Elshikh, Sarah Abdul Razak, Asif Kamal","doi":"10.1515/chem-2023-0196","DOIUrl":null,"url":null,"abstract":"Nanomaterials have become integral in various aspects of agricultural practices, including the development of nano-fertilizers for optimized crop nutrition. This study explores the application of green-synthesized iron (Fe) and molybdenum (Mo) nanoparticles, as well as their composites, using a guava leaf extract (GLE). The focus is on assessing their impact on nitrogen fixation and growth in tomato plants (<jats:italic>Solanum lycopersicum</jats:italic>). The nanoparticles were characterized through Fourier Transform Infrared Spectroscopy, Ultraviolet Diffused Reflectance Spectroscopy, Raman Spectroscopy, and X-ray diffraction analysis. The experiment involved two application methods (soil and direct plant spraying) with varying nanoparticle concentrations. Results indicate that the 1% composite nanoparticles applied to the soil and 3% Mo directly on plants yield the most favorable growth and nitrogen uptake in <jats:italic>S. lycopersicum</jats:italic>. Notably, the 1% composite treatment demonstrated significant enhancement in shoot length, number of branches, and shoot diameter at all three growth stages. Conversely, the 3% Mo treatment when applied directly to plants exhibited optimal results showing substantial shoot length, number of branches, and shoot diameter. Post-experimental soil nutrient analysis further revealed the nuanced effects of nanoparticle applications with 1% composite treatments enhancing nutrient availability compared to control and other concentrations. This research contributes to the evolving field of agri-nanotechnology emphasizing the importance of nanoparticle concentration and application method in influencing plant development and nutrient uptake, paving the way for sustainable agricultural practices.","PeriodicalId":19520,"journal":{"name":"Open Chemistry","volume":"170 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/chem-2023-0196","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials have become integral in various aspects of agricultural practices, including the development of nano-fertilizers for optimized crop nutrition. This study explores the application of green-synthesized iron (Fe) and molybdenum (Mo) nanoparticles, as well as their composites, using a guava leaf extract (GLE). The focus is on assessing their impact on nitrogen fixation and growth in tomato plants (Solanum lycopersicum). The nanoparticles were characterized through Fourier Transform Infrared Spectroscopy, Ultraviolet Diffused Reflectance Spectroscopy, Raman Spectroscopy, and X-ray diffraction analysis. The experiment involved two application methods (soil and direct plant spraying) with varying nanoparticle concentrations. Results indicate that the 1% composite nanoparticles applied to the soil and 3% Mo directly on plants yield the most favorable growth and nitrogen uptake in S. lycopersicum. Notably, the 1% composite treatment demonstrated significant enhancement in shoot length, number of branches, and shoot diameter at all three growth stages. Conversely, the 3% Mo treatment when applied directly to plants exhibited optimal results showing substantial shoot length, number of branches, and shoot diameter. Post-experimental soil nutrient analysis further revealed the nuanced effects of nanoparticle applications with 1% composite treatments enhancing nutrient availability compared to control and other concentrations. This research contributes to the evolving field of agri-nanotechnology emphasizing the importance of nanoparticle concentration and application method in influencing plant development and nutrient uptake, paving the way for sustainable agricultural practices.
期刊介绍:
Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. The central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. The journal is the premier source for cutting edge research in fundamental chemistry and it provides high quality peer review services for its authors across the world. Moreover, it allows for libraries everywhere to avoid subscribing to multiple local publications, and to receive instead all the necessary chemistry research from a single source available to the entire scientific community.