Quantitative Characterization of Retinal Features in Translated OCTA

Rashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam
{"title":"Quantitative Characterization of Retinal Features in Translated OCTA","authors":"Rashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam","doi":"10.1101/2024.02.23.24303275","DOIUrl":null,"url":null,"abstract":"Purpose: This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography (OCT) images into Optical Coherence Tomography Angiography (OCTA) images, potentially bypassing the need for specialized OCTA hardware.\nMethods: The method involved a generative adversarial network framework that includes a 2D vascular segmentation model and a 2D OCTA image translation model. This framework is designed to enhance the accuracy, resolution, and continuity of vascular regions in the translated OCTA (TR-OCTA) images. The study utilizes a public dataset of 500 patients, divided into subsets based on resolution and disease status, to validate the quality of TR-OCTA images. The validation employs several quality and quantitative metrics to compare the translated images with ground truth OCTAs (GT-OCTA).\nResult: TR-OCTAs showed high image quality in both 3 and 6 mm datasets (high-resolution, moderate structural similarity and contrast quality compared to GT-OCTAs). There were slight discrepancies in vascular metrics, especially in diseased patients. Blood vessel features like tortuosity and vessel perimeter index showed a better trend compared to density features which are affected by local vascular distortions.\nConclusion: This study presents a promising solution to the limitations of OCTA adoption in clinical practice by using ML to translate OCT data into OCTA images.\nTranslation relevance: This study has the potential to significantly enhance the diagnostic process for retinal diseases by making detailed vascular imaging more widely available and reducing dependency on costly OCTA equipment.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.23.24303275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography (OCT) images into Optical Coherence Tomography Angiography (OCTA) images, potentially bypassing the need for specialized OCTA hardware. Methods: The method involved a generative adversarial network framework that includes a 2D vascular segmentation model and a 2D OCTA image translation model. This framework is designed to enhance the accuracy, resolution, and continuity of vascular regions in the translated OCTA (TR-OCTA) images. The study utilizes a public dataset of 500 patients, divided into subsets based on resolution and disease status, to validate the quality of TR-OCTA images. The validation employs several quality and quantitative metrics to compare the translated images with ground truth OCTAs (GT-OCTA). Result: TR-OCTAs showed high image quality in both 3 and 6 mm datasets (high-resolution, moderate structural similarity and contrast quality compared to GT-OCTAs). There were slight discrepancies in vascular metrics, especially in diseased patients. Blood vessel features like tortuosity and vessel perimeter index showed a better trend compared to density features which are affected by local vascular distortions. Conclusion: This study presents a promising solution to the limitations of OCTA adoption in clinical practice by using ML to translate OCT data into OCTA images. Translation relevance: This study has the potential to significantly enhance the diagnostic process for retinal diseases by making detailed vascular imaging more widely available and reducing dependency on costly OCTA equipment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转化 OCTA 中视网膜特征的定量表征
目的:本研究探讨了使用生成式机器学习(ML)将光学相干断层扫描(OCT)图像转换为光学相干断层扫描血管造影(OCTA)图像的可行性,从而有可能绕过对专业 OCTA 硬件的需求:该方法涉及一个生成对抗网络框架,其中包括一个二维血管分割模型和一个二维 OCTA 图像转换模型。该框架旨在提高翻译后的 OCTA(TR-OCTA)图像中血管区域的准确性、分辨率和连续性。该研究利用一个包含 500 名患者的公共数据集来验证 TR-OCTA 图像的质量,该数据集根据分辨率和疾病状态分为若干子集。验证采用了多个质量和定量指标,将翻译后的图像与地面实况 OCTA(GT-OCTA)进行比较:结果:TR-OCTA 在 3 毫米和 6 毫米数据集中均显示出较高的图像质量(与 GT-OCTA 相比,具有高分辨率、中等结构相似性和对比度质量)。血管指标略有差异,尤其是在患病患者中。与受局部血管扭曲影响的密度特征相比,迂曲度和血管周长指数等血管特征显示出更好的趋势:本研究通过使用 ML 将 OCT 数据转化为 OCTA 图像,为临床实践中采用 OCTA 的局限性提供了一个很有前景的解决方案:这项研究有可能通过更广泛地提供详细的血管成像,减少对昂贵的 OCTA 设备的依赖,从而大大提高视网膜疾病的诊断过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of the ectasia screening index from raw Casia2 volume data for keratoconus identification by using convolutional neural networks Utilizing AI-Generated Plain Language Summaries to Enhance Interdisciplinary Understanding of Ophthalmology Notes: A Randomized Trial Deep Learning-Based Detection of Reticular Pseudodrusen in Age-Related Macular Degeneration on Optical Coherence Tomography Photoreceptor outer segment reflectivity with ultrahigh resolution visible light optical coherence tomography in systemic hydroxychloroquine use Comparison of visual function analysis of people with low vision using three different models of augmented reality devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1