Deep Learning-Based Detection of Reticular Pseudodrusen in Age-Related Macular Degeneration on Optical Coherence Tomography

Himeesh Kumar, Yelena Bagdasarova, Scott Song, Doron G. Hickey, Amy C. Cohn, Mali Okada, Robert P. Finger, Jan H. Terheyden, Ruth E. Hogg, Pierre-Henry Gabrielle, Louis Arnould, Maxime Jannaud, Xavier Hadoux, Peter van Wijngaarden, Carla J. Abbott, Lauren A.B. Hodgson, Roy Schwartz, Adnan Tufail, Emily Y. Chew, Cecilia S. Lee, Erica L. Fletcher, Melanie Bahlo, Brendan R.E. Ansell, Alice Pebay, Robyn H. Guymer, Aaron Y. Lee, Zhichao Wu
{"title":"Deep Learning-Based Detection of Reticular Pseudodrusen in Age-Related Macular Degeneration on Optical Coherence Tomography","authors":"Himeesh Kumar, Yelena Bagdasarova, Scott Song, Doron G. Hickey, Amy C. Cohn, Mali Okada, Robert P. Finger, Jan H. Terheyden, Ruth E. Hogg, Pierre-Henry Gabrielle, Louis Arnould, Maxime Jannaud, Xavier Hadoux, Peter van Wijngaarden, Carla J. Abbott, Lauren A.B. Hodgson, Roy Schwartz, Adnan Tufail, Emily Y. Chew, Cecilia S. Lee, Erica L. Fletcher, Melanie Bahlo, Brendan R.E. Ansell, Alice Pebay, Robyn H. Guymer, Aaron Y. Lee, Zhichao Wu","doi":"10.1101/2024.09.11.24312817","DOIUrl":null,"url":null,"abstract":"Reticular pseudodrusen (RPD) signify a critical phenotype driving vision loss in age-related macular degeneration (AMD). Their detection is paramount in the clinical management of those with AMD, yet they remain challenging to reliably identify. We thus developed a deep learning (DL) model to segment RPD from 9,800 optical coherence tomography B-scans, and this model produced RPD segmentations that had higher agreement with four retinal specialists (Dice similarity coefficient [DSC]=0.76 [95% confidence interval [CI] 0.71-0.81]) than the agreement amongst the specialists (DSC=0.68, 95% CI=0.63-0.73; p<0.001). In five external test datasets consisting of 1,017 eyes from 812 individuals, the DL model detected RPD with a similar level of performance as two retinal specialists (area-under-the-curve of 0.94 [95% CI=0.92-0.97], 0.95 [95% CI=0.92-0.97] and 0.96 [95% CI=0.94-0.98] respectively; p≥0.32). This DL model enables the automatic detection and quantification of RPD with expert-level performance, which we have made publicly available.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.24312817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reticular pseudodrusen (RPD) signify a critical phenotype driving vision loss in age-related macular degeneration (AMD). Their detection is paramount in the clinical management of those with AMD, yet they remain challenging to reliably identify. We thus developed a deep learning (DL) model to segment RPD from 9,800 optical coherence tomography B-scans, and this model produced RPD segmentations that had higher agreement with four retinal specialists (Dice similarity coefficient [DSC]=0.76 [95% confidence interval [CI] 0.71-0.81]) than the agreement amongst the specialists (DSC=0.68, 95% CI=0.63-0.73; p<0.001). In five external test datasets consisting of 1,017 eyes from 812 individuals, the DL model detected RPD with a similar level of performance as two retinal specialists (area-under-the-curve of 0.94 [95% CI=0.92-0.97], 0.95 [95% CI=0.92-0.97] and 0.96 [95% CI=0.94-0.98] respectively; p≥0.32). This DL model enables the automatic detection and quantification of RPD with expert-level performance, which we have made publicly available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的光学相干断层扫描检测老年性黄斑变性中的网状假皱纹
网状假性黄斑(RPD)是导致老年性黄斑变性(AMD)视力下降的一个重要表型。在黄斑变性患者的临床管理中,检测出RPD至关重要,但可靠地识别RPD仍具有挑战性。因此,我们开发了一种深度学习(DL)模型,从 9,800 张光学相干断层扫描 B 扫描图像中分割 RPD,该模型产生的 RPD 分割结果与四位视网膜专家的一致性(Dice 相似性系数 [DSC]=0.76 [95% 置信区间 [CI] 0.71-0.81])高于专家之间的一致性(DSC=0.68, 95% CI=0.63-0.73; p<0.001)。在由来自 812 人的 1,017 只眼睛组成的五个外部测试数据集中,DL 模型检测 RPD 的性能水平与两位视网膜专家相似(曲线下面积分别为 0.94 [95% CI=0.92-0.97], 0.95 [95% CI=0.92-0.97] 和 0.96 [95% CI=0.94-0.98]; p≥0.32)。该 DL 模型可自动检测和量化 RPD,其性能达到专家水平,我们已将其公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of the ectasia screening index from raw Casia2 volume data for keratoconus identification by using convolutional neural networks Utilizing AI-Generated Plain Language Summaries to Enhance Interdisciplinary Understanding of Ophthalmology Notes: A Randomized Trial Deep Learning-Based Detection of Reticular Pseudodrusen in Age-Related Macular Degeneration on Optical Coherence Tomography Photoreceptor outer segment reflectivity with ultrahigh resolution visible light optical coherence tomography in systemic hydroxychloroquine use Comparison of visual function analysis of people with low vision using three different models of augmented reality devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1