Multi-qubit gates and 'Schrödinger cat' states in an optical clock

Alec Cao, William J. Eckner, Theodor Lukin Yelin, Aaron W. Young, Sven Jandura, Lingfeng Yan, Kyungtae Kim, Guido Pupillo, Jun Ye, Nelson Darkwah Oppong, Adam M. Kaufman
{"title":"Multi-qubit gates and 'Schrödinger cat' states in an optical clock","authors":"Alec Cao, William J. Eckner, Theodor Lukin Yelin, Aaron W. Young, Sven Jandura, Lingfeng Yan, Kyungtae Kim, Guido Pupillo, Jun Ye, Nelson Darkwah Oppong, Adam M. Kaufman","doi":"arxiv-2402.16289","DOIUrl":null,"url":null,"abstract":"Many-particle entanglement is a key resource for achieving the fundamental\nprecision limits of a quantum sensor. Optical atomic clocks, the current\nstate-of-the-art in frequency precision, are a rapidly emerging area of focus\nfor entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring\nmicroscopic control and detection with the high-fidelity entangling gates\ndeveloped for atom-array information processing offers a promising route\ntowards leveraging highly entangled quantum states for improved optical clocks.\nHere we develop and employ a family of multi-qubit Rydberg gates to generate\n'Schr\\\"odinger cat' states of the Greenberger-Horne-Zeilinger (GHZ) type with\nup to 9 optical clock qubits in a programmable atom array. In an atom-laser\ncomparison at sufficiently short dark times, we demonstrate a fractional\nfrequency instability below the standard quantum limit using GHZ states of up\nto 4 qubits. A key challenge to improving the optimal achievable clock\nprecision with GHZ states is their reduced dynamic range. Towards overcoming\nthis hurdle, we simultaneously prepare a cascade of varying-size GHZ states to\nperform unambiguous phase estimation over an extended interval. These results\ndemonstrate key building blocks for approaching Heisenberg-limited scaling of\noptical atomic clock precision.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.16289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor. Optical atomic clocks, the current state-of-the-art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring microscopic control and detection with the high-fidelity entangling gates developed for atom-array information processing offers a promising route towards leveraging highly entangled quantum states for improved optical clocks. Here we develop and employ a family of multi-qubit Rydberg gates to generate 'Schr\"odinger cat' states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 9 optical clock qubits in a programmable atom array. In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits. A key challenge to improving the optimal achievable clock precision with GHZ states is their reduced dynamic range. Towards overcoming this hurdle, we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase estimation over an extended interval. These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学时钟中的多量子比特门和 "薛定谔猫 "状态
多粒子纠缠是实现量子传感器基本精度极限的关键资源。光学原子钟是目前频率精度最先进的技术,也是纠缠增强计量学的一个迅速崛起的重点领域。利用为原子阵列信息处理而开发的高保真纠缠门来增强基于镊子的时钟的微观控制和探测功能,为利用高度纠缠的量子态来改进光学时钟提供了一条前景广阔的途径。在这里,我们开发并采用了一系列多量子比特雷德贝格门来生成格林伯格-霍恩-蔡林格(Greenberger-Horne-Zeilinger,GHZ)类型的 "薛定谔猫 "态,并在可编程原子阵列中生成多达 9 个光学时钟量子比特。在足够短的暗时间内进行的原子激光比较中,我们证明了使用多达 4 个量子比特的 GHZ 状态会产生低于标准量子极限的分数频率不稳定性。使用 GHZ 状态提高最佳可实现时钟精度的一个关键挑战是其动态范围较小。为了克服这一障碍,我们同时制备了大小各异的级联 GHZ 状态,以便在更长的时间间隔内执行无误的相位估计。这些成果展示了接近海森堡极限光学原子钟精度扩展的关键构件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance advantage of protective quantum measurements Mechanical Wannier-Stark Ladder of Diamond Spin-Mechanical Lamb Wave Resonators Towards practical secure delegated quantum computing with semi-classical light Quantum-like nonlinear interferometry with frequency-engineered classical light QUBO-based SVM for credit card fraud detection on a real QPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1