Romain Dalidet, Anthony Martin, Grégory Sauder, Laurent Labonté, Sébastien Tanzilli
{"title":"Quantum-like nonlinear interferometry with frequency-engineered classical light","authors":"Romain Dalidet, Anthony Martin, Grégory Sauder, Laurent Labonté, Sébastien Tanzilli","doi":"arxiv-2409.12049","DOIUrl":null,"url":null,"abstract":"Quantum interferometry methods exploit quantum resources, such as photonic\nentanglement, to enhance phase estimation beyond classical limits. Nonlinear\noptics has served as a workhorse for the generation of entangled photon pairs,\nensuring both energy and phase conservation, but at the cost of limited rate\nand degraded signal-to-noise ratio compared to laser-based interferometry\napproaches. We present a \"quantum-like\" nonlinear optical method that reaches\nsuper-resolution in single-photon detection regime. This is achieved by\nreplacing photon-pairs by coherent states of light, mimicking quantum\nproperties through classical nonlinear optics processes. Our scheme utilizes\ntwo high-brightness lasers. This results in a substantially greater\nsignal-to-noise ratio compared to its quantum counterpart. Such an approach\npaves the way to significantly reduced acquisition times, providing a pathway\nto explore signals across a broader range of bandwidth. The need to increase\nthe frequency bandwidth of the quantum sensor significantly motivates the\npotential applications of this pathway.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum interferometry methods exploit quantum resources, such as photonic
entanglement, to enhance phase estimation beyond classical limits. Nonlinear
optics has served as a workhorse for the generation of entangled photon pairs,
ensuring both energy and phase conservation, but at the cost of limited rate
and degraded signal-to-noise ratio compared to laser-based interferometry
approaches. We present a "quantum-like" nonlinear optical method that reaches
super-resolution in single-photon detection regime. This is achieved by
replacing photon-pairs by coherent states of light, mimicking quantum
properties through classical nonlinear optics processes. Our scheme utilizes
two high-brightness lasers. This results in a substantially greater
signal-to-noise ratio compared to its quantum counterpart. Such an approach
paves the way to significantly reduced acquisition times, providing a pathway
to explore signals across a broader range of bandwidth. The need to increase
the frequency bandwidth of the quantum sensor significantly motivates the
potential applications of this pathway.