{"title":"Air quality index prediction using seasonal autoregressive integrated moving average transductive long short-term memory","authors":"Subramanian Deepan, Murugan Saravanan","doi":"10.4218/etrij.2023-0283","DOIUrl":null,"url":null,"abstract":"<p>We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O<sub>3</sub>, CO, SO<sub>2</sub>, NO, NO<sub>2</sub>, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA–TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 5","pages":"915-927"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0283","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O3, CO, SO2, NO, NO2, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA–TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.