A review on the chemical speciation and influencing factors of heavy metals in Municipal Solid Waste landfill humus

Qiongyu Sun, Bo Sun, Defeng Wang, Yuyuan Pu, Mingxiu Zhan, Xu Xu, Jinqing Wang, Wentao Jiao
{"title":"A review on the chemical speciation and influencing factors of heavy metals in Municipal Solid Waste landfill humus","authors":"Qiongyu Sun,&nbsp;Bo Sun,&nbsp;Defeng Wang,&nbsp;Yuyuan Pu,&nbsp;Mingxiu Zhan,&nbsp;Xu Xu,&nbsp;Jinqing Wang,&nbsp;Wentao Jiao","doi":"10.1007/s42768-023-00186-8","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal pollution in landfill humus can cause serious environmental problems and may endanger soil ecosystems and human health. The biological toxicity of heavy metals is not only related to their total amount but also influenced to a greater extent by the distribution of their chemical speciation. Exploring the different chemical speciation and proportions of heavy metals can provide a more comprehensive and accurate understanding of the pollution characteristics and biological toxicity of heavy metals in landfill soil. Based on a review of the relevant literature, this paper systematically summarizes the recent research status of typical heavy metal chemical speciation in landfill humus. This chemical speciation is diverse and complex. For instance, heavy metals in residual states and organically bound states have little impact on organisms, while heavy metals in exchangeable states and Fe–Mn oxide states can easily migrate and transform. The chemical speciation of heavy metals is affected by many factors, among which the soil pH and organic matter content are some of the most important factors. Finally, the existing gaps in the current research on the chemical speciation of heavy metals in landfills are described and future research directions are proposed. This work provides a theoretical reference for researching the restoration of heavy metal-contaminated humus soil and the resource utilization of humus soil.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"209 - 218"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00186-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal pollution in landfill humus can cause serious environmental problems and may endanger soil ecosystems and human health. The biological toxicity of heavy metals is not only related to their total amount but also influenced to a greater extent by the distribution of their chemical speciation. Exploring the different chemical speciation and proportions of heavy metals can provide a more comprehensive and accurate understanding of the pollution characteristics and biological toxicity of heavy metals in landfill soil. Based on a review of the relevant literature, this paper systematically summarizes the recent research status of typical heavy metal chemical speciation in landfill humus. This chemical speciation is diverse and complex. For instance, heavy metals in residual states and organically bound states have little impact on organisms, while heavy metals in exchangeable states and Fe–Mn oxide states can easily migrate and transform. The chemical speciation of heavy metals is affected by many factors, among which the soil pH and organic matter content are some of the most important factors. Finally, the existing gaps in the current research on the chemical speciation of heavy metals in landfills are described and future research directions are proposed. This work provides a theoretical reference for researching the restoration of heavy metal-contaminated humus soil and the resource utilization of humus soil.

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市固体废弃物填埋场腐殖土中重金属的化学式及影响因素综述
垃圾填埋场腐殖土中的重金属污染会造成严重的环境问题,并可能危及土壤生态系统和人类健康。重金属的生物毒性不仅与其总量有关,在更大程度上还受其化学成分分布的影响。探究重金属的不同化学成分和比例,可以更全面、准确地了解垃圾填埋场土壤中重金属的污染特征和生物毒性。本文在综述相关文献的基础上,系统总结了近年来垃圾填埋场腐殖土中典型重金属化学标型的研究现状。这种化学式是多样而复杂的。例如,残留态和有机结合态的重金属对生物的影响很小,而可交换态和铁锰氧化物态的重金属则很容易迁移和转化。重金属的化学式受多种因素影响,其中土壤 pH 值和有机物含量是最重要的因素。最后,介绍了目前在垃圾填埋场重金属化学标示研究方面存在的不足,并提出了未来的研究方向。这项工作为研究重金属污染腐殖土的修复和腐殖土的资源化利用提供了理论参考。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1