首页 > 最新文献

Waste Disposal & Sustainable Energy最新文献

英文 中文
Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal 基于废丙烯酸纤维/纳米壳聚糖的用于去除刚果红和结晶紫的防污超滤膜
Pub Date : 2024-09-19 DOI: 10.1007/s42768-024-00208-z
Ahmed E. Abdelhamid, Salah E. Selim, Gamal A. Meligi, Ahmed I. Hussain, Mahmoud A. Mabrouk

In this study, acrylic fibers waste blended with different ratios of nanochitosan (0.5%, 1%, 2% and 4%, in weight) were converted into antifouling ultrafiltration nanocomposite membranes using a phase separation technique for the remediation of Congo red (CR) and crystal violet (CV) dyes from water. The fabricated nanocomposite membranes were investigated using Fourier Transform Infrared (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). The membrane hydrophilicity was estimated using contact angle measurements, which revealed that the 4% loaded nanochitosan had the highest hydrophilicity. Additionally, the water uptake, porosity, water contact angle and water flux of the nanocomposite membranes were assessed. The membrane filtration performances were explored for the removal of CR and CV as anionic and cationic dyes, respectively, at different concentrations and various applied pressures (1 bar to 4 bar). The experimental data revealed a high rejection (R) performance for CR (R≃100%) with a high water flux of about 150 L/(m2·h) to 183 L/(m2·h) for the optimized membrane with 2% nanochitosan at an applied pressure of 4 bar. The rejection for CV showed a variant rejection (70%–99%) at different dye concentrations with fluxes ranging from 93.6 L/(m2·h) to 149.5 L/(m2·h) for the same composite membrane. The composite membrane showed enhanced flux recovery after fouling by bovine serum albumin and was resistant to widespread gram-positive (Staphylococcus aureus) bacteria.

Graphical abstract

本研究采用相分离技术,将丙烯酸纤维废料与不同比例的纳米壳聚糖(重量百分比分别为 0.5%、1%、2% 和 4%)混合,制成防污超滤纳米复合膜,用于修复水中的刚果红(CR)和水晶紫(CV)染料。使用傅立叶变换红外(FTIR)、热重分析(TGA)、X 射线衍射(XRD)和扫描电子显微镜(SEM)对制备的纳米复合膜进行了研究。通过接触角测量估算了膜的亲水性,结果表明负载 4% 纳米壳聚糖的膜具有最高的亲水性。此外,还评估了纳米复合膜的吸水率、孔隙率、水接触角和水通量。在不同浓度和不同应用压力(1 巴至 4 巴)条件下,探讨了分别去除阴离子染料 CR 和阳离子染料 CV 的膜过滤性能。实验数据显示,在 4 巴的应用压力下,含有 2% 纳米壳聚糖的优化膜对 CR 有较高的去除率(R≃100%),水通量约为 150 升/(平方米-小时)至 183 升/(平方米-小时)。同样的复合膜在不同染料浓度下对 CV 的去除率显示出不同的去除率(70%-99%),通量从 93.6 升/(平方米-小时)到 149.5 升/(平方米-小时)不等。复合膜在被牛血清白蛋白堵塞后显示出更强的通量恢复能力,并能抵抗广泛存在的革兰氏阳性(金黄色葡萄球菌)细菌。
{"title":"Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal","authors":"Ahmed E. Abdelhamid, Salah E. Selim, Gamal A. Meligi, Ahmed I. Hussain, Mahmoud A. Mabrouk","doi":"10.1007/s42768-024-00208-z","DOIUrl":"https://doi.org/10.1007/s42768-024-00208-z","url":null,"abstract":"<p>In this study, acrylic fibers waste blended with different ratios of nanochitosan (0.5%, 1%, 2% and 4%, in weight) were converted into antifouling ultrafiltration nanocomposite membranes using a phase separation technique for the remediation of Congo red (CR) and crystal violet (CV) dyes from water. The fabricated nanocomposite membranes were investigated using Fourier Transform Infrared (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). The membrane hydrophilicity was estimated using contact angle measurements, which revealed that the 4% loaded nanochitosan had the highest hydrophilicity. Additionally, the water uptake, porosity, water contact angle and water flux of the nanocomposite membranes were assessed. The membrane filtration performances were explored for the removal of CR and CV as anionic and cationic dyes, respectively, at different concentrations and various applied pressures (1 bar to 4 bar). The experimental data revealed a high rejection (<i>R</i>) performance for CR (<i>R</i>≃100%) with a high water flux of about 150 L/(m<sup>2</sup>·h) to 183 L/(m<sup>2</sup>·h) for the optimized membrane with 2% nanochitosan at an applied pressure of 4 bar. The rejection for CV showed a variant rejection (70%–99%) at different dye concentrations with fluxes ranging from 93.6 L/(m<sup>2</sup>·h) to 149.5 L/(m<sup>2</sup>·h) for the same composite membrane. The composite membrane showed enhanced flux recovery after fouling by bovine serum albumin and was resistant to widespread gram-positive (<i>Staphylococcus aureus</i>) bacteria.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments 提高餐厨垃圾和污水污泥厌氧共消化过程中的甲烷产量:不同类型铁添加剂的作用
Pub Date : 2024-08-07 DOI: 10.1007/s42768-024-00207-0
Roghayeh Karimirad, Liwen Luo, Jonathan W. C. Wong

Iron element is known to be an effective additive for accelerating the anaerobic digestion (AD) process for treating organic wastes. However, the effects of different kinds of iron additives on food waste (FW) and sewage sludge of co-digestion process have not been yet investigated thoroughly. This study aimed to elucidate how different kinds of iron components affect methane production during FW and sewage sludge anaerobic co-digestion (co-AD) process and to investigate the possible mechanism of Fe amendment. Experimental results revealed that Fe amendment could effectively promote the substrate degradation and methane production, and FeCl3 amended group presented the best digestion performance, boosting the methane production from 465.9 mL to 2650.4 mL. The results of the excitation-emission matrix fluorescence spectra analysis further supported that Fe supplements facilitated the waste hydrolysis with a higher concentration of dissolved organic matters and thereby more substrates can be used for methane generation. In addition, the activity of coenzyme F420 and direct interspecies electron transfer in FeCl3 group were 5.82 and 5.89 times higher than those in the control group, respectively, indicating that electron transfer, particularly the interspecies one, was enhanced by Fe amendment. As compared to that in the control group, the increased cytochrome c concentration in Fe amended groups also proved it. Therefore, this study will provide a reference regarding Fe amendment in the co-AD process for FW and sewage sludge.

Graphical abstract

众所周知,铁元素是加速厌氧消化(AD)工艺处理有机废物的有效添加剂。然而,不同种类的铁添加剂对食物垃圾(FW)和污水污泥协同消化过程的影响尚未得到深入研究。本研究旨在阐明不同种类的铁成分如何影响厨余垃圾和污水污泥厌氧协同消化(co-digestion,co-AD)过程中的甲烷产量,并探讨铁添加剂的可能作用机理。实验结果表明,铁添加剂能有效促进底物降解和甲烷产生,其中FeCl3添加剂组的消化效果最好,甲烷产生量从465.9 mL提高到2650.4 mL。激发-发射矩阵荧光光谱分析结果进一步证明,添加铁元素可促进废物水解,提高溶解有机物的浓度,从而使更多的底物可用于产生甲烷。此外,FeCl3 组的辅酶 F420 活性和种间直接电子传递活性分别是对照组的 5.82 倍和 5.89 倍,表明添加铁元素后电子传递,尤其是种间电子传递得到了增强。与对照组相比,铁添加组细胞色素 c 浓度的增加也证明了这一点。因此,本研究将为在 FW 和污水污泥的协同厌氧发酵过程中添加铁元素提供参考。 图表摘要
{"title":"Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments","authors":"Roghayeh Karimirad, Liwen Luo, Jonathan W. C. Wong","doi":"10.1007/s42768-024-00207-0","DOIUrl":"https://doi.org/10.1007/s42768-024-00207-0","url":null,"abstract":"<p>Iron element is known to be an effective additive for accelerating the anaerobic digestion (AD) process for treating organic wastes. However, the effects of different kinds of iron additives on food waste (FW) and sewage sludge of co-digestion process have not been yet investigated thoroughly. This study aimed to elucidate how different kinds of iron components affect methane production during FW and sewage sludge anaerobic co-digestion (co-AD) process and to investigate the possible mechanism of Fe amendment. Experimental results revealed that Fe amendment could effectively promote the substrate degradation and methane production, and FeCl<sub>3</sub> amended group presented the best digestion performance, boosting the methane production from 465.9 mL to 2650.4 mL. The results of the excitation-emission matrix fluorescence spectra analysis further supported that Fe supplements facilitated the waste hydrolysis with a higher concentration of dissolved organic matters and thereby more substrates can be used for methane generation. In addition, the activity of coenzyme F420 and direct interspecies electron transfer in FeCl<sub>3</sub> group were 5.82 and 5.89 times higher than those in the control group, respectively, indicating that electron transfer, particularly the interspecies one, was enhanced by Fe amendment. As compared to that in the control group, the increased cytochrome <i>c</i> concentration in Fe amended groups also proved it. Therefore, this study will provide a reference regarding Fe amendment in the co-AD process for FW and sewage sludge.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues 结合蚯蚓堆肥和膜覆盖好氧堆肥的两阶段战略,实现厨余固体残渣的增值回收利用
Pub Date : 2024-08-03 DOI: 10.1007/s42768-024-00206-1
Nan Hu, Zhenye Tong, Fei Li, Xia Zhang, Haofeng Gao, Jun Zhou

Kitchen waste solid residues (KWSR) are secondary organic solid wastes generated from kitchen waste (KW) after oil and slurry separation. In this study, two recycling methods for KWSR were investigated: direct membrane-covered aerobic composting (T1) and a two-stage method combining vermicomposting with membrane-covered aerobic composting (T2). Compared with T1, T2 had a faster increase in pile temperature, a shorter thermal stage, lower greenhouse gas emissions and higher NH3 emissions. The vermicomposting promoted the formation of humus and shortened the maturation time during aerobic composting, resulting in a shorter treatment period for T2 (18 d) than for T1 (21 d). The initial bacterial communities of T1 and T2 were significantly different, but they became similar as composting progressed. The economic feasibility analysis showed that 1000 kg of KWSR generated a profit of 285 CNY using the T2 method, which was higher than that of T1 (36 CNY). The outcomes of the present study provide an improved strategy for the management of KWSR.

Graphical abstract

厨余固体残渣(KWSR)是厨余(KW)经过油和泥浆分离后产生的二次有机固体废物。本研究调查了两种回收利用厨余固体残渣的方法:直接膜覆盖好氧堆肥法(T1)和蚯蚓堆肥与膜覆盖好氧堆肥相结合的两阶段法(T2)。与 T1 相比,T2 的堆温上升更快,热阶段更短,温室气体排放量更低,NH3 排放量更高。蚯蚓堆肥促进了腐殖质的形成,缩短了好氧堆肥的成熟时间,因此 T2 的处理期(18 天)比 T1(21 天)短。T1 和 T2 的初始细菌群落有显著差异,但随着堆肥的进行,它们变得相似。经济可行性分析表明,使用 T2 方法,1000 千克 KWSR 可产生 285 元人民币的利润,高于 T1 方法(36 元人民币)。本研究的结果为 KWSR 的管理提供了一种改进策略。
{"title":"A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues","authors":"Nan Hu, Zhenye Tong, Fei Li, Xia Zhang, Haofeng Gao, Jun Zhou","doi":"10.1007/s42768-024-00206-1","DOIUrl":"https://doi.org/10.1007/s42768-024-00206-1","url":null,"abstract":"<p>Kitchen waste solid residues (KWSR) are secondary organic solid wastes generated from kitchen waste (KW) after oil and slurry separation. In this study, two recycling methods for KWSR were investigated: direct membrane-covered aerobic composting (T1) and a two-stage method combining vermicomposting with membrane-covered aerobic composting (T2). Compared with T1, T2 had a faster increase in pile temperature, a shorter thermal stage, lower greenhouse gas emissions and higher NH<sub>3</sub> emissions. The vermicomposting promoted the formation of humus and shortened the maturation time during aerobic composting, resulting in a shorter treatment period for T2 (18 d) than for T1 (21 d). The initial bacterial communities of T1 and T2 were significantly different, but they became similar as composting progressed. The economic feasibility analysis showed that 1000 kg of KWSR generated a profit of 285 CNY using the T2 method, which was higher than that of T1 (36 CNY). The outcomes of the present study provide an improved strategy for the management of KWSR.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"185 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slum dynamics: the interplay of remittances, waste disposal and health outcomes 贫民窟动态:汇款、废物处理和健康结果的相互作用
Pub Date : 2024-07-03 DOI: 10.1007/s42768-024-00202-5
Md Abdul Bari, Mohammad Ajmal Khuram, Ghulam Dastgir Khan, Yuichiro Yoshida

Slum dwellers often fail to expend enough on waste disposal to have a healthy life, and remittances provide funds for a household to expend on the betterment of life conditions. This paper examines the impact of remittances on total monthly waste disposal expenditures and the impact of better waste disposal on monthly health expenditures among slum households in Bangladesh. Propensity score matching was adopted as an identification strategy to reduce selection bias. In this study, remittance includes both remittances received from within and outside Bangladesh. Remittance receipt equals 1 if a household receives remittances from within and/or outside of Bangladesh. Our results show that remittances increase expenditures on waste disposal by 28.77% to 32.74% among slum households in Bangladesh. Waste disposal expenditure is considered as an indicator of better waste disposal. Furthermore, we find that better waste disposal reduces total outpatient expenditures. A reduction in outpatient expenditure indicates that waste disposal results in better health conditions for slum dwellers. The findings of this study can be connected to Sustainable Development Goal 11, which targets sustainable cities and communities and suggests that remittances are a bottom-up financial mechanism for improving waste disposal at the micro level to improve health status.

Graphical abstract

贫民窟居民往往没有足够的废物处理支出来维持健康的生活,而汇款则为家庭提供了改善生活条件的资金。本文研究了汇款对孟加拉国贫民窟家庭每月垃圾处理总支出的影响,以及改善垃圾处理对每月健康支出的影响。为减少选择偏差,采用了倾向得分匹配作为识别策略。在本研究中,汇款包括从孟加拉国境内和境外收到的汇款。如果一个家庭收到了来自孟加拉国境内和/或境外的汇款,则汇款接收等于 1。我们的研究结果表明,汇款使孟加拉国贫民窟家庭的垃圾处理支出增加了 28.77% 至 32.74%。垃圾处理支出被认为是更好地处理垃圾的指标。此外,我们还发现,更好的废物处理会减少门诊总支出。门诊支出的减少表明,垃圾处理改善了贫民窟居民的健康状况。本研究的结果可与可持续发展目标 11 相联系,该目标针对可持续发展的城市和社区,并表明汇款是一种自下而上的金融机制,可改善微观层面的废物处理,从而改善健康状况。
{"title":"Slum dynamics: the interplay of remittances, waste disposal and health outcomes","authors":"Md Abdul Bari, Mohammad Ajmal Khuram, Ghulam Dastgir Khan, Yuichiro Yoshida","doi":"10.1007/s42768-024-00202-5","DOIUrl":"https://doi.org/10.1007/s42768-024-00202-5","url":null,"abstract":"<p>Slum dwellers often fail to expend enough on waste disposal to have a healthy life, and remittances provide funds for a household to expend on the betterment of life conditions. This paper examines the impact of remittances on total monthly waste disposal expenditures and the impact of better waste disposal on monthly health expenditures among slum households in Bangladesh. Propensity score matching was adopted as an identification strategy to reduce selection bias. In this study, remittance includes both remittances received from within and outside Bangladesh. Remittance receipt equals 1 if a household receives remittances from within and/or outside of Bangladesh. Our results show that remittances increase expenditures on waste disposal by 28.77% to 32.74% among slum households in Bangladesh. Waste disposal expenditure is considered as an indicator of better waste disposal. Furthermore, we find that better waste disposal reduces total outpatient expenditures. A reduction in outpatient expenditure indicates that waste disposal results in better health conditions for slum dwellers. The findings of this study can be connected to Sustainable Development Goal 11, which targets sustainable cities and communities and suggests that remittances are a bottom-up financial mechanism for improving waste disposal at the micro level to improve health status.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production 基于石墨氮化碳(g-C3N4)的抗生素和染料降解及制氢复合材料综述
Pub Date : 2024-07-01 DOI: 10.1007/s42768-024-00198-y
Saddam Husein, Slamet, Eniya Listiani Dewi

This paper reviews recent advances in the use of graphite carbon nitride (g-C3N4)-based composite photocatalysts for antibiotic and dye degradation and hydrogen production. It also discusses the structure, synthesis, modification, morphology, doping, preparation, and application of a particular subject and evaluates the advantages and disadvantages of different morphologies and preparation processes. The photocatalysts based on g-C3N4-based composites have demonstrated great potential. The g-C3N4 has been modified and tailored into various novel structures and morphologies to improve its efficiency in the photocatalytic degradation of pollutants. The techniques such as doping, metal deposition, heterojunction formation, and structural tuning enhance the rate of light absorption, charge transfer, and charge separation of g-C3N4. This leads to improved photocatalytic performance for antibiotic and dye degradation and hydrogen production.

本文综述了利用氮化石墨(g-C3N4)基复合光催化剂降解抗生素、染料和制氢的最新进展。报告还讨论了特定主题的结构、合成、改性、形态、掺杂、制备和应用,并评估了不同形态和制备工艺的优缺点。基于 g-C3N4 复合材料的光催化剂已显示出巨大的潜力。为了提高 g-C3N4 光催化降解污染物的效率,人们对其进行了各种新型结构和形态的改性和定制。掺杂、金属沉积、异质结形成和结构调整等技术提高了 g-C3N4 的光吸收率、电荷转移率和电荷分离率。从而提高了抗生素、染料降解和制氢的光催化性能。
{"title":"A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production","authors":"Saddam Husein, Slamet, Eniya Listiani Dewi","doi":"10.1007/s42768-024-00198-y","DOIUrl":"https://doi.org/10.1007/s42768-024-00198-y","url":null,"abstract":"<p>This paper reviews recent advances in the use of graphite carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)-based composite photocatalysts for antibiotic and dye degradation and hydrogen production. It also discusses the structure, synthesis, modification, morphology, doping, preparation, and application of a particular subject and evaluates the advantages and disadvantages of different morphologies and preparation processes. The photocatalysts based on g-C<sub>3</sub>N<sub>4</sub>-based composites have demonstrated great potential. The g-C<sub>3</sub>N<sub>4</sub> has been modified and tailored into various novel structures and morphologies to improve its efficiency in the photocatalytic degradation of pollutants. The techniques such as doping, metal deposition, heterojunction formation, and structural tuning enhance the rate of light absorption, charge transfer, and charge separation of g-C<sub>3</sub>N<sub>4</sub>. This leads to improved photocatalytic performance for antibiotic and dye degradation and hydrogen production.</p>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell 用鸡粪对碳纳米纤维进行功能化,以催化燃料电池中的氧还原反应
Pub Date : 2024-06-27 DOI: 10.1007/s42768-024-00203-4
Prabhsharan Kaur, Veerpal Kaur, Gaurav Verma

Chicken manure (CM) is one of the most common animal wastes produced worldwide. The conventional application of CM is as a fertilizer; however, in the present study, we introduce an approach for the straightforward and affordable use of CM for fuel cell applications. It reports the functionalization of carbon nanofibers (CNFs) using CM to confer multiple functionalities. The elements that make up the functionalized CNF are nitrogen (7.40%, atoms ratio, the same below), oxygen (6.22%), phosphorous (0.30%), and sulfur (0.02%), etc., according to energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy studies. It has been verified that following treatment with CM, the morphology of the CNFs remains the same. The CM-modified CNFs exhibit a higher electrocatalytic activity (onset potential: −0.0756 V; limiting current density: 2.69 mA/cm2) for the oxygen reduction reaction (ORR) at the cathode of a fuel cell. The electron transfer number for this sample is 3.68, i.e., the ORR favours a four-electron pathway like Pt/C. The direct method of functionalizing the CNF is more effective; however, treatment of CNFs with Triton X-100 prior to functionalization shields their otherwise exposed open edge sites and in turn affects their ORR activity. A large surface area (99.866 m2/g), the presence of multiple functional elements (oxygen, nitrogen, phosphorous, sulfur, etc.), surface charge redistribution and induced donor–acceptor interactions at the surface of CM-modified CNFs contribute to their enhanced electrochemical activity. This preliminary study reports the suitability of a facile and economical approach for treating CM for the most advanced clean energy applications. Hopefully, this study will pave the way for cutting-edge methods for handling other biowaste materials as well.

Graphical abstract

鸡粪(CM)是全世界最常见的动物废弃物之一。鸡粪的传统用途是用作肥料;然而,在本研究中,我们介绍了一种将鸡粪直接用于燃料电池的方法,而且成本低廉。研究报告介绍了利用 CM 赋予碳纳米纤维(CNF)多种功能的方法。根据能量色散 X 射线光谱、X 射线光电子能谱和傅里叶变换红外光谱研究,构成功能化 CNF 的元素包括氮(7.40%,原子比,下同)、氧(6.22%)、磷(0.30%)和硫(0.02%)等。研究证实,经 CM 处理后,CNFs 的形态保持不变。CM 改性的 CNFs 在燃料电池阴极的氧还原反应(ORR)中表现出更高的电催化活性(起始电位:-0.0756 V;极限电流密度:2.69 mA/cm2)。该样品的电子转移数为 3.68,即 ORR 更倾向于四电子途径,如 Pt/C。直接对 CNF 进行功能化的方法更为有效;但是,在功能化之前用 Triton X-100 处理 CNF 会屏蔽其暴露在外的开放边缘位点,进而影响其 ORR 活性。CM 改性 CNF 的大表面积(99.866 m2/g)、多种功能元素(氧、氮、磷、硫等)的存在、表面电荷的重新分布以及表面诱导的供体-受体相互作用有助于增强其电化学活性。这项初步研究报告了一种简便、经济的处理 CM 方法的适用性,可用于最先进的清洁能源应用。希望这项研究也能为处理其他生物废料的前沿方法铺平道路。
{"title":"Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell","authors":"Prabhsharan Kaur, Veerpal Kaur, Gaurav Verma","doi":"10.1007/s42768-024-00203-4","DOIUrl":"https://doi.org/10.1007/s42768-024-00203-4","url":null,"abstract":"<p>Chicken manure (CM) is one of the most common animal wastes produced worldwide. The conventional application of CM is as a fertilizer; however, in the present study, we introduce an approach for the straightforward and affordable use of CM for fuel cell applications. It reports the functionalization of carbon nanofibers (CNFs) using CM to confer multiple functionalities. The elements that make up the functionalized CNF are nitrogen (7.40%, atoms ratio, the same below), oxygen (6.22%), phosphorous (0.30%), and sulfur (0.02%), etc., according to energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy studies. It has been verified that following treatment with CM, the morphology of the CNFs remains the same. The CM-modified CNFs exhibit a higher electrocatalytic activity (onset potential: −0.0756 V; limiting current density: 2.69 mA/cm<sup>2</sup>) for the oxygen reduction reaction (ORR) at the cathode of a fuel cell. The electron transfer number for this sample is 3.68, i.e., the ORR favours a four-electron pathway like Pt/C. The direct method of functionalizing the CNF is more effective; however, treatment of CNFs with Triton X-100 prior to functionalization shields their otherwise exposed open edge sites and in turn affects their ORR activity. A large surface area (99.866 m<sup>2</sup>/g), the presence of multiple functional elements (oxygen, nitrogen, phosphorous, sulfur, etc.), surface charge redistribution and induced donor–acceptor interactions at the surface of CM-modified CNFs contribute to their enhanced electrochemical activity. This preliminary study reports the suitability of a facile and economical approach for treating CM for the most advanced clean energy applications. Hopefully, this study will pave the way for cutting-edge methods for handling other biowaste materials as well.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on heat dissipation optimization and energy conservation of supercapacitor energy storage tram 超级电容器储能电车散热优化与节能研究
Pub Date : 2024-06-21 DOI: 10.1007/s42768-024-00196-0
Yibo Deng, Sheng Zeng, Chushan Li, Ting Chen, Yan Deng

Uneven heat dissipation will affect the reliability and performance attenuation of tram supercapacitor, and reducing the energy consumption of heat dissipation is also a problem that must be solved in supercapacitor engineering applications. This paper takes the vehicle supercapacitor energy storage power supply as the research object, and uses computational fluid dynamics (CFD) simulation to calculate its internal temperature distribution to solve the problem that the internal heat dissipation of the power supply in the initial design scheme is not uniform, and the maximum temperature of cell capacitors is as high as 67 °C. Filling of heat-conducting silicone film between single cell capacitors inside the module can conduct heat from single cell capacitor in the center of the module to the edge of the module quickly; adding baffles in the cabinet can optimize the air duct, and the temperature between the modules can be uniform; as a result of the combined effect of the two optimization measures, the maximum temperature of the cell capacitors drops to 55.5 °C, which is lower than the allowable operating temperature limit of the capacitor cell 56 °C. For the first time, the scheme of using air-conditioning waste exhaust air to cool supercapacitor energy storage power supply is proposed. Compared with the traditional cooling scheme using special air conditioning units, each energy storage system can save 967.16 kW·h per year using air-conditioning waste exhaust cooling, effectively reducing the overall energy consumption of the vehicle.

散热不均匀会影响电车超级电容器的可靠性和性能衰减,降低散热能耗也是超级电容器工程应用中必须解决的问题。本文以车载超级电容储能电源为研究对象,利用计算流体力学(CFD)模拟计算其内部温度分布,解决了初始设计方案中电源内部散热不均匀,单元电容最高温度高达67 ℃的问题。在模块内部单格电容之间填充导热硅胶膜,可以将模块中心单格电容的热量快速传导到模块边缘;在箱体中增加挡板,可以优化风道,模块之间的温度可以均匀;在两种优化措施的共同作用下,单格电容的最高温度降至 55.5 ℃,低于电容单元 56 ℃的允许工作温度上限。首次提出了利用空调废气冷却超级电容器储能电源的方案。与使用专用空调机组的传统冷却方案相比,利用空调废气冷却每个储能系统每年可节约 967.16 kW-h,有效降低了车辆的整体能耗。
{"title":"Research on heat dissipation optimization and energy conservation of supercapacitor energy storage tram","authors":"Yibo Deng,&nbsp;Sheng Zeng,&nbsp;Chushan Li,&nbsp;Ting Chen,&nbsp;Yan Deng","doi":"10.1007/s42768-024-00196-0","DOIUrl":"10.1007/s42768-024-00196-0","url":null,"abstract":"<div><p>Uneven heat dissipation will affect the reliability and performance attenuation of tram supercapacitor, and reducing the energy consumption of heat dissipation is also a problem that must be solved in supercapacitor engineering applications. This paper takes the vehicle supercapacitor energy storage power supply as the research object, and uses computational fluid dynamics (CFD) simulation to calculate its internal temperature distribution to solve the problem that the internal heat dissipation of the power supply in the initial design scheme is not uniform, and the maximum temperature of cell capacitors is as high as 67 °C. Filling of heat-conducting silicone film between single cell capacitors inside the module can conduct heat from single cell capacitor in the center of the module to the edge of the module quickly; adding baffles in the cabinet can optimize the air duct, and the temperature between the modules can be uniform; as a result of the combined effect of the two optimization measures, the maximum temperature of the cell capacitors drops to 55.5 °C, which is lower than the allowable operating temperature limit of the capacitor cell 56 °C. For the first time, the scheme of using air-conditioning waste exhaust air to cool supercapacitor energy storage power supply is proposed. Compared with the traditional cooling scheme using special air conditioning units, each energy storage system can save 967.16 kW·h per year using air-conditioning waste exhaust cooling, effectively reducing the overall energy consumption of the vehicle.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"419 - 427"},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in food waste management: from resource recovery to sustainable solutions 食物垃圾管理创新:从资源回收到可持续解决方案
Pub Date : 2024-05-29 DOI: 10.1007/s42768-024-00201-6
Na Xiao, Lingxian Kong, Mengmeng Wei, Xiufang Hu, Ou Li

Food waste (FW) constitutes a significant portion of municipal solid waste (MSW) and represents an underutilized resource with substantial potential for energy generation. The effective management and recycling of FW are crucial for mitigating environmental issues and minimizing associated health risks. This comprehensive review provides an in-depth overview of current technological applications for converting FW into energy with the dual goals of reducing environmental impact and maximizing resource utilization. It covers various aspects, including pretreatment methods, biological technologies (e.g., anaerobic digestion and fermentation), and thermal technologies (e.g., incineration, pyrolysis, gasification, and hydrothermal carbonization). The analysis includes the scope, advantages and disadvantages of these techniques. Landfilling, composting, and incineration are widely considered the most prevalent methods of FW disposal and have substantial negative impacts on the environment. Advanced technologies such as anaerobic fermentation offer environmental benefits and are suitable for scaling up, reducing greenhouse gas emissions, and producing renewable energy such as biogas, thus reducing carbon emissions. The promotion and adoption of advanced technologies like anaerobic fermentation can contribute to more sustainable FW management practices, reduce environmental impacts, and support the transition to a circular economy. Additionally, this article presents successful case studies, emphasizing the importance of technological integration in FW treatment. Furthermore, this article outlines future directions for FW treatment, including advancements in biological treatment technologies, decentralized treatment systems, and the adoption of digital and data-driven FW management systems. These emerging trends aim to promote sustainable, resource-efficient, and environmentally responsible FW management practices.

Graphical abstract

厨余垃圾(FW)占城市固体废物(MSW)的很大一部分,是一种未得到充分利用的资源,具有巨大的能源生产潜力。有效管理和回收利用厨余垃圾对于缓解环境问题和最大限度降低相关健康风险至关重要。本综述深入概述了当前将可再生资源转化为能源的技术应用,以实现减少环境影响和最大限度提高资源利用率的双重目标。内容涉及各个方面,包括预处理方法、生物技术(如厌氧消化和发酵)和热技术(如焚烧、热解、气化和热液碳化)。分析包括这些技术的范围、优点和缺点。填埋、堆肥和焚烧被广泛认为是最普遍的废物处理方法,对环境有很大的负面影响。厌氧发酵等先进技术具有环境效益,适合扩大规模,减少温室气体排放,生产沼气等可再生能源,从而减少碳排放。推广和采用厌氧发酵等先进技术可促进更可持续的化石燃料管理实践,减少对环境的影响,并支持向循环经济过渡。此外,本文还介绍了成功的案例研究,强调了技术集成在化肥厂处理中的重要性。此外,本文还概述了未来的 FW 处理方向,包括生物处理技术的进步、分散式处理系统以及数字和数据驱动的 FW 管理系统的采用。这些新兴趋势旨在促进可持续、资源节约型和对环境负责任的化肥厂管理实践。
{"title":"Innovations in food waste management: from resource recovery to sustainable solutions","authors":"Na Xiao,&nbsp;Lingxian Kong,&nbsp;Mengmeng Wei,&nbsp;Xiufang Hu,&nbsp;Ou Li","doi":"10.1007/s42768-024-00201-6","DOIUrl":"10.1007/s42768-024-00201-6","url":null,"abstract":"<div><p>Food waste (FW) constitutes a significant portion of municipal solid waste (MSW) and represents an underutilized resource with substantial potential for energy generation. The effective management and recycling of FW are crucial for mitigating environmental issues and minimizing associated health risks. This comprehensive review provides an in-depth overview of current technological applications for converting FW into energy with the dual goals of reducing environmental impact and maximizing resource utilization. It covers various aspects, including pretreatment methods, biological technologies (e.g., anaerobic digestion and fermentation), and thermal technologies (e.g., incineration, pyrolysis, gasification, and hydrothermal carbonization). The analysis includes the scope, advantages and disadvantages of these techniques. Landfilling, composting, and incineration are widely considered the most prevalent methods of FW disposal and have substantial negative impacts on the environment. Advanced technologies such as anaerobic fermentation offer environmental benefits and are suitable for scaling up, reducing greenhouse gas emissions, and producing renewable energy such as biogas, thus reducing carbon emissions. The promotion and adoption of advanced technologies like anaerobic fermentation can contribute to more sustainable FW management practices, reduce environmental impacts, and support the transition to a circular economy. Additionally, this article presents successful case studies, emphasizing the importance of technological integration in FW treatment. Furthermore, this article outlines future directions for FW treatment, including advancements in biological treatment technologies, decentralized treatment systems, and the adoption of digital and data-driven FW management systems. These emerging trends aim to promote sustainable, resource-efficient, and environmentally responsible FW management practices.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"401 - 417"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of pyrolysis in medical rubber gloves: pyrolysis characteristics, kinetics, thermodynamics, volatile products, and pathways 医用橡胶手套热解综合分析:热解特性、动力学、热力学、挥发性产物和途径
Pub Date : 2024-05-23 DOI: 10.1007/s42768-024-00197-z
Xianbo Qu, Yanlong Li, Xiaojuan Zhang, Rundong Li

The surge in medical waste, fueled by the impact of COVID-19 and the influenza A virus, poses substantial challenges to waste treatment. Nevertheless, pyrolysis technology introduces a novel approach to the treatment of medical waste. This study investigated the pyrolytic characteristics, kinetics, thermodynamic parameters, volatile gases, and pyrolytic pathways of medical rubber gloves (MRGs) in a N2 atmosphere utilizing Thermal Gravimetric Analyzer (TGA), Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and Pyrolysis gas chrogams-mass spectrometry (Py-GC/MS) analyses. Pyrolysis of MRG predominantly occurs between 284–501 °C and 613–701 °C. The initial stage is the primary reaction phase, exhibiting an average activation energy of 339.77 kJ/mol, following the reaction order model (Fn). The second pyrolysis stage has an average activation energy of 236.93 kJ/mol and adheres to the geometric contraction model (Rn). The volatile products from MRG pyrolysis primarily comprise olefins, alkanes, and aromatic hydrocarbons. The olefins consist primarily of 1,2-pentadiene and d-limonene, while the alkanes include cyclopropane, cyclohexane, and 1,4-dimethyl. Aromatic compounds are chiefly benzene, toluene, and xylene.

Graphical abstract

受 COVID-19 和甲型流感病毒的影响,医疗废物激增,给废物处理带来了巨大挑战。然而,热解技术为医疗废物的处理引入了一种新方法。本研究利用热重分析仪(TGA)、热重-傅立叶变换红外光谱仪(TG-FTIR)和热解气体质谱仪(Py-GC/MS)分析,研究了医用橡胶手套(MRGs)在氮气环境中的热解特性、动力学、热力学参数、挥发性气体和热解途径。MRG 的热解主要发生在 284-501 °C 和 613-701 °C 之间。初始阶段为初级反应阶段,按照反应顺序模型(Fn),平均活化能为 339.77 kJ/mol。第二个热解阶段的平均活化能为 236.93 kJ/mol,遵循几何收缩模型 (Rn)。MRG 高温分解产生的挥发性产物主要包括烯烃、烷烃和芳香烃。烯烃主要包括 1,2-戊二烯和 d-柠檬烯,烷烃包括环丙烷、环己烷和 1,4-二甲基。芳香族化合物主要是苯、甲苯和二甲苯。
{"title":"Comprehensive analysis of pyrolysis in medical rubber gloves: pyrolysis characteristics, kinetics, thermodynamics, volatile products, and pathways","authors":"Xianbo Qu,&nbsp;Yanlong Li,&nbsp;Xiaojuan Zhang,&nbsp;Rundong Li","doi":"10.1007/s42768-024-00197-z","DOIUrl":"10.1007/s42768-024-00197-z","url":null,"abstract":"<div><p>The surge in medical waste, fueled by the impact of COVID-19 and the influenza A virus, poses substantial challenges to waste treatment. Nevertheless, pyrolysis technology introduces a novel approach to the treatment of medical waste. This study investigated the pyrolytic characteristics, kinetics, thermodynamic parameters, volatile gases, and pyrolytic pathways of medical rubber gloves (MRGs) in a N<sub>2</sub> atmosphere utilizing Thermal Gravimetric Analyzer (TGA), Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and Pyrolysis gas chrogams-mass spectrometry (Py-GC/MS) analyses. Pyrolysis of MRG predominantly occurs between 284–501 °C and 613–701 °C. The initial stage is the primary reaction phase, exhibiting an average activation energy of 339.77 kJ/mol, following the reaction order model (<i>F</i>n). The second pyrolysis stage has an average activation energy of 236.93 kJ/mol and adheres to the geometric contraction model (<i>R</i>n). The volatile products from MRG pyrolysis primarily comprise olefins, alkanes, and aromatic hydrocarbons. The olefins consist primarily of 1,2-pentadiene and <span>d</span>-limonene, while the alkanes include cyclopropane, cyclohexane, and 1,4-dimethyl. Aromatic compounds are chiefly benzene, toluene, and xylene.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"297 - 308"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photothermal catalysis for CO2 reduction with H2O by amphoteric metal oxides modified TiO2 两性金属氧化物修饰的二氧化钛增强了二氧化碳与 H2O 还原的光热催化作用
Pub Date : 2024-05-16 DOI: 10.1007/s42768-023-00185-9
Wenhui Huang, Li Zhang, Jianan Hong, Hongfen Mo, Chenyu Xu, Yanwei Zhang

Due to competitive adsorption between CO2 and H2O, hydrogen evolution reaction reacts easily in the photothermal CO2 reduction. Herein, the amphoteric oxide loaded on TiO2 catalyst was prepared to enhance CO2 adsorption as well as improve the photo-responsive properties. The samples with 10% mass fraction of ZnO loaded on TiO2 exhibited the best photothermal catalytic performance. The average yields of H2, CO and CH4 were estimated to be 35.7, 43.5, and 5.7 μmol/(g·h), respectively. Also, the selectivity of carbon-containing products increased from 28.9% to 48.8% when compared to P25. The loading of amphoteric oxides can act as adsorption sites on the material surface to adsorb acidic molecules of CO2 for reaction, improving the selectivity of carbon-containing products. In addition, amphoteric oxides are good semiconductors, which can improve the photo-responsive properties of the catalyst and form heterostructures with TiO2 to promote the separation of photogenerated electron–hole pairs, allowing more photo-generated carriers to participate in the reaction. Finally, both functions including CO2 adsorption and solar light absorption could be realized on the all-in-one amphoteric oxide loaded on TiO2 component.

Graphical abstract

由于 CO2 和 H2O 之间存在竞争性吸附,因此在光热还原 CO2 的过程中很容易发生氢进化反应。本文制备了负载在 TiO2 催化剂上的两性氧化物,以增强对 CO2 的吸附并改善其光响应特性。在 TiO2 上负载 10% 质量分数 ZnO 的样品表现出最佳的光热催化性能。据估计,H2、CO 和 CH4 的平均产率分别为 35.7、43.5 和 5.7 μmol/(g-h)。此外,与 P25 相比,含碳产物的选择性从 28.9% 提高到 48.8%。两性氧化物的负载可以作为材料表面的吸附位点,吸附二氧化碳的酸性分子进行反应,从而提高含碳产物的选择性。此外,两性氧化物是良好的半导体,可提高催化剂的光响应特性,并与 TiO2 形成异质结构,促进光生电子-空穴对的分离,使更多的光生载流子参与反应。最后,在负载于 TiO2 成分的一体化两性氧化物上可以实现二氧化碳吸附和太阳光吸收两种功能。
{"title":"Enhanced photothermal catalysis for CO2 reduction with H2O by amphoteric metal oxides modified TiO2","authors":"Wenhui Huang,&nbsp;Li Zhang,&nbsp;Jianan Hong,&nbsp;Hongfen Mo,&nbsp;Chenyu Xu,&nbsp;Yanwei Zhang","doi":"10.1007/s42768-023-00185-9","DOIUrl":"10.1007/s42768-023-00185-9","url":null,"abstract":"<div><p>Due to competitive adsorption between CO<sub>2</sub> and H<sub>2</sub>O, hydrogen evolution reaction reacts easily in the photothermal CO<sub>2</sub> reduction. Herein, the amphoteric oxide loaded on TiO<sub>2</sub> catalyst was prepared to enhance CO<sub>2</sub> adsorption as well as improve the photo-responsive properties. The samples with 10% mass fraction of ZnO loaded on TiO<sub>2</sub> exhibited the best photothermal catalytic performance. The average yields of H<sub>2</sub>, CO and CH<sub>4</sub> were estimated to be 35.7, 43.5, and 5.7 μmol/(g·h), respectively. Also, the selectivity of carbon-containing products increased from 28.9% to 48.8% when compared to P25. The loading of amphoteric oxides can act as adsorption sites on the material surface to adsorb acidic molecules of CO<sub>2</sub> for reaction, improving the selectivity of carbon-containing products. In addition, amphoteric oxides are good semiconductors, which can improve the photo-responsive properties of the catalyst and form heterostructures with TiO<sub>2</sub> to promote the separation of photogenerated electron–hole pairs, allowing more photo-generated carriers to participate in the reaction. Finally, both functions including CO<sub>2</sub> adsorption and solar light absorption could be realized on the all-in-one amphoteric oxide loaded on TiO<sub>2</sub> component.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"309 - 321"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Waste Disposal & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1