Variant functional assessment in Drosophila by overexpression: what can we learn?
IF 2.3 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGYGenomePub Date : 2024-06-01Epub Date: 2024-02-27DOI:10.1139/gen-2023-0135
Yina Her, Danielle M Pascual, Zoe Goldstone-Joubert, Paul C Marcogliese
{"title":"Variant functional assessment in <i>Drosophila</i> by overexpression: what can we learn?","authors":"Yina Her, Danielle M Pascual, Zoe Goldstone-Joubert, Paul C Marcogliese","doi":"10.1139/gen-2023-0135","DOIUrl":null,"url":null,"abstract":"<p><p>The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in <i>Drosophila melanogaster</i>, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, \"humanization\", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in <i>Drosophila</i>. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in <i>Drosophila</i> to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"158-167"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2023-0135","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.