What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2025-01-01 Epub Date: 2024-02-28 DOI:10.1002/pst.2366
Kjell Johnson, Max Kuhn
{"title":"What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing.","authors":"Kjell Johnson, Max Kuhn","doi":"10.1002/pst.2366","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2366"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
他们忘了告诉你机器学习在制药业中的应用。
预测模型(又称机器学习模型)在药物研究、安全、开发、制造和营销的各个阶段无处不在。制药公司内外都在使用这些模型的结果,以了解科学过程,预测新样本或患者的特征。虽然有很多资源介绍了这些模型,但很少有资源介绍如何开发一个强大的模型,从可用数据中提取尽可能高的性能,尤其是在支持制药应用方面。本教程将介绍开发和验证预测模型的陷阱和最佳实践,具体应用于监测制药生产过程。本教程将重点介绍这些陷阱和最佳实践,以引起人们对其他资源中未普遍讨论的具体要点的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Introduction to qualification and validation of an immunoassay. What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing. Statistical approaches to evaluate in vitro dissolution data against proposed dissolution specifications. Synergy detection: A practical guide to statistical assessment of potential drug combinations. The partnership between statisticians and the Institutional Animal Care and Use Committee (IACUC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1