{"title":"What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing.","authors":"Kjell Johnson, Max Kuhn","doi":"10.1002/pst.2366","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2366"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.