{"title":"IL-36 Regulates Neutrophil Chemotaxis and Bone Loss at the Oral Barrier.","authors":"J Liu, H Meng, Y Mao, L Zhong, W Pan, Q Chen","doi":"10.1177/00220345231225413","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that <i>IL36G</i> is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345231225413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that IL36G is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.