{"title":"The polymer diffusive instability in highly concentrated polymeric fluids","authors":"Theo Lewy, Rich Kerswell","doi":"10.1016/j.jnnfm.2024.105212","DOIUrl":null,"url":null,"abstract":"<div><p>The extrusion of polymer melts is known to be susceptible to ‘melt fracture’ instabilities, which can deform the extrudate, or cause it to break entirely. Motivated by this, we consider the impact that the recently discovered polymer diffusive instability (PDI) can have on polymer melts and other concentrated polymeric fluids using the Oldroyd-B model with the effects of polymer stress diffusion included. Analytic progress can be made in the concentrated limit (when the solvent-to-total-viscosity ratio <span><math><mrow><mi>β</mi><mo>→</mo><mn>0</mn></mrow></math></span>), illustrating the boundary layer structure of PDI, and allowing the prediction of its eigenvalues for both plane Couette and channel flow. We draw connections between PDI and the polymer melt ‘sharkskin’ instability, both of which are short wavelength instabilities localised to the extrudate surface. Inertia is shown to have a destabilising effect, reducing the smallest Weissenberg number (<span><math><mi>W</mi></math></span>) where PDI exists in a concentrated fluid from <span><math><mrow><mi>W</mi><mo>∼</mo><mn>8</mn></mrow></math></span> in inertialess flows, to <span><math><mrow><mi>W</mi><mo>∼</mo><mn>2</mn></mrow></math></span> when inertia is significant.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"326 ","pages":"Article 105212"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025724000284/pdfft?md5=d5f2290074c51216f4a96d454f79203b&pid=1-s2.0-S0377025724000284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000284","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The extrusion of polymer melts is known to be susceptible to ‘melt fracture’ instabilities, which can deform the extrudate, or cause it to break entirely. Motivated by this, we consider the impact that the recently discovered polymer diffusive instability (PDI) can have on polymer melts and other concentrated polymeric fluids using the Oldroyd-B model with the effects of polymer stress diffusion included. Analytic progress can be made in the concentrated limit (when the solvent-to-total-viscosity ratio ), illustrating the boundary layer structure of PDI, and allowing the prediction of its eigenvalues for both plane Couette and channel flow. We draw connections between PDI and the polymer melt ‘sharkskin’ instability, both of which are short wavelength instabilities localised to the extrudate surface. Inertia is shown to have a destabilising effect, reducing the smallest Weissenberg number () where PDI exists in a concentrated fluid from in inertialess flows, to when inertia is significant.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.