Zunqiu Xiao , Huaying Wang , Ningyuan Cai , Yutong Li , Kejia Xiang , Wei Wei , Tao Ye , Zhongtai Zhang , Shitong Wang , Zilong Tang
{"title":"Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes","authors":"Zunqiu Xiao , Huaying Wang , Ningyuan Cai , Yutong Li , Kejia Xiang , Wei Wei , Tao Ye , Zhongtai Zhang , Shitong Wang , Zilong Tang","doi":"10.1016/j.elecom.2024.107684","DOIUrl":null,"url":null,"abstract":"<div><p>Anti-perovskite materials such as Li<sub>2</sub>(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li<sub>2</sub>(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li<sub>2</sub>(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO<sub>4</sub>, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107684"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000274/pdfft?md5=89ea848dda67b7e574e3808964152f37&pid=1-s2.0-S1388248124000274-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000274","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-perovskite materials such as Li2(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li2(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li2(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO4, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.