Transformer-based reranking for improving Korean morphological analysis systems

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-02-28 DOI:10.4218/etrij.2023-0364
Jihee Ryu, Soojong Lim, Oh-Woog Kwon, Seung-Hoon Na
{"title":"Transformer-based reranking for improving Korean morphological analysis systems","authors":"Jihee Ryu,&nbsp;Soojong Lim,&nbsp;Oh-Woog Kwon,&nbsp;Seung-Hoon Na","doi":"10.4218/etrij.2023-0364","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a new approach in Korean morphological analysis combining dictionary-based techniques with Transformer-based deep learning models. The key innovation is the use of a BERT-based reranking system, significantly enhancing the accuracy of traditional morphological analysis. The method generates multiple suboptimal paths, then employs BERT models for reranking, leveraging their advanced language comprehension. Results show remarkable performance improvements, with the first-stage reranking achieving over 20% improvement in error reduction rate compared with existing models. The second stage, using another BERT variant, further increases this improvement to over 30%. This indicates a significant leap in accuracy, validating the effectiveness of merging dictionary-based analysis with contemporary deep learning. The study suggests future exploration in refined integrations of dictionary and deep learning methods as well as using probabilistic models for enhanced morphological analysis. This hybrid approach sets a new benchmark in the field and offers insights for similar challenges in language processing applications.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 1","pages":"137-153"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0364","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0364","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new approach in Korean morphological analysis combining dictionary-based techniques with Transformer-based deep learning models. The key innovation is the use of a BERT-based reranking system, significantly enhancing the accuracy of traditional morphological analysis. The method generates multiple suboptimal paths, then employs BERT models for reranking, leveraging their advanced language comprehension. Results show remarkable performance improvements, with the first-stage reranking achieving over 20% improvement in error reduction rate compared with existing models. The second stage, using another BERT variant, further increases this improvement to over 30%. This indicates a significant leap in accuracy, validating the effectiveness of merging dictionary-based analysis with contemporary deep learning. The study suggests future exploration in refined integrations of dictionary and deep learning methods as well as using probabilistic models for enhanced morphological analysis. This hybrid approach sets a new benchmark in the field and offers insights for similar challenges in language processing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变换器的重排,用于改进韩国语形态分析系统
本研究介绍了一种将基于词典的技术与基于 Transformer 的深度学习模型相结合的韩语形态分析新方法。其关键创新在于使用基于 BERT 的重排系统,从而显著提高传统形态分析的准确性。该方法会生成多条次优路径,然后利用 BERT 模型的高级语言理解能力进行重排。结果表明,该方法的性能有了显著提高,与现有模型相比,第一阶段重新排序的错误减少率提高了 20% 以上。第二阶段使用另一种 BERT 变体,将错误减少率进一步提高到 30% 以上。这表明准确率有了重大飞跃,验证了基于词典的分析与当代深度学习相结合的有效性。这项研究建议未来探索如何将词典和深度学习方法进行精细整合,以及使用概率模型来增强形态分析。这种混合方法为该领域树立了新的标杆,并为语言处理应用中的类似挑战提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1