Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw
Yin Yin Kyawt, Min Aung, Yao Xu, Zhanying Sun, Yaqi Zhou, Weiyun Zhu, Varijakshapanicker Padmakumar, Zhankun Tan, Yanfen Cheng
{"title":"Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw","authors":"Yin Yin Kyawt, Min Aung, Yao Xu, Zhanying Sun, Yaqi Zhou, Weiyun Zhu, Varijakshapanicker Padmakumar, Zhankun Tan, Yanfen Cheng","doi":"10.1186/s40104-023-00983-5","DOIUrl":null,"url":null,"abstract":"Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed. Our previous study showed that feeding bio-fermented rice straw (BF) improved the feed intake and weight gain of sheep. However, it remains unclear why feeding BF to sheep increased their feed intake and weight gain. Therefore, the purposes of this research were to investigate how the rumen microbiota and serum metabolome are dynamically changing after feeding BF, as well as how their changes influence the feed intake, digestibility, nutrient transport, meat quality and growth performances of sheep. Twelve growing Hu sheep were allocated into 3 groups: alfalfa hay fed group (AH: positive control), rice straw fed group (RS: negative control) and BF fed group (BF: treatment). Samples of rumen content, blood, rumen epithelium, muscle, feed offered and refusals were collected for the subsequent analysis. Feeding BF changed the microbial community and rumen fermentation, particularly increasing (P < 0.05) relative abundance of Prevotella and propionate production, and decreasing (P < 0.05) enteric methane yield. The histomorphology (height, width, area and thickness) of rumen papillae and gene expression for carbohydrate transport (MCT1), tight junction (claudin-1, claudin-4), and cell proliferation (CDK4, Cyclin A2, Cyclin E1) were improved (P < 0.05) in sheep fed BF. Additionally, serum metabolome was also dynamically changed, which led to up-regulating (P < 0.05) the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF. As a result, the higher (P < 0.05) feed intake, digestibility, growth rate, feed efficiency, meat quality and mono-unsaturated fatty acid concentration in muscle, and the lower (P < 0.05) feed cost per kg of live weight were achieved by feeding BF. Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost. Therefore, bio-fermentation of rice straw could be an innovative way for improving ruminant production with minimizing production costs. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"2016 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-023-00983-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed. Our previous study showed that feeding bio-fermented rice straw (BF) improved the feed intake and weight gain of sheep. However, it remains unclear why feeding BF to sheep increased their feed intake and weight gain. Therefore, the purposes of this research were to investigate how the rumen microbiota and serum metabolome are dynamically changing after feeding BF, as well as how their changes influence the feed intake, digestibility, nutrient transport, meat quality and growth performances of sheep. Twelve growing Hu sheep were allocated into 3 groups: alfalfa hay fed group (AH: positive control), rice straw fed group (RS: negative control) and BF fed group (BF: treatment). Samples of rumen content, blood, rumen epithelium, muscle, feed offered and refusals were collected for the subsequent analysis. Feeding BF changed the microbial community and rumen fermentation, particularly increasing (P < 0.05) relative abundance of Prevotella and propionate production, and decreasing (P < 0.05) enteric methane yield. The histomorphology (height, width, area and thickness) of rumen papillae and gene expression for carbohydrate transport (MCT1), tight junction (claudin-1, claudin-4), and cell proliferation (CDK4, Cyclin A2, Cyclin E1) were improved (P < 0.05) in sheep fed BF. Additionally, serum metabolome was also dynamically changed, which led to up-regulating (P < 0.05) the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF. As a result, the higher (P < 0.05) feed intake, digestibility, growth rate, feed efficiency, meat quality and mono-unsaturated fatty acid concentration in muscle, and the lower (P < 0.05) feed cost per kg of live weight were achieved by feeding BF. Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost. Therefore, bio-fermentation of rice straw could be an innovative way for improving ruminant production with minimizing production costs.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.