Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-08-01 Epub Date: 2024-02-29 DOI:10.1007/s00449-024-02975-9
Priya Das, Gouhar Jahan Ashraf, Tania Baishya, Tarun Kumar Dua, Paramita Paul, Gouranga Nandi, Ankita Dutta, Divya Limbu, Anoop Kumar, Manab Deb Adhikari, Saikat Dewanjee, Ranabir Sahu
{"title":"Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications.","authors":"Priya Das, Gouhar Jahan Ashraf, Tania Baishya, Tarun Kumar Dua, Paramita Paul, Gouranga Nandi, Ankita Dutta, Divya Limbu, Anoop Kumar, Manab Deb Adhikari, Saikat Dewanjee, Ranabir Sahu","doi":"10.1007/s00449-024-02975-9","DOIUrl":null,"url":null,"abstract":"<p><p>The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC<sub>50</sub> = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC<sub>50</sub> = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC<sub>50</sub> = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1139-1150"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-02975-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC50 = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC50 = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC50 = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用杜邦叶提取物配制银纳米粒子并评估其多功能治疗应用。
目前的研究重点是利用杜邦叶提取物绿色合成银纳米粒子(AgNPs)。在紫外-可见光分析中,453 nm 处的表面等离子共振波段证实了 AgNPs 的绿色合成。配制的 AgNPs 直径约为 99.72 nm,呈球形。傅立叶变换红外光谱(FTIR)显示了大叶女贞中植物化学物质的生物还原潜力,这从根本上影响了 AgNPs 的合成。Zeta 电位、动态光散射(DLS)、扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDX)、X 射线衍射(XRD)和透射电子显微镜(TEM)分析揭示了 AgNPs 的物理化学属性。实验还进一步研究了 AgNPs 的抗氧化、抗糖尿病、抗癌和抗菌潜力。DPPH 自由基测定显示了绿色合成 AgNPs 的潜在自由基清除能力(IC50 = 76.73 μg/ml)。α-淀粉酶抑制测定显示了 AgNPs 对这种淀粉分解酶的显著抑制潜力(IC50 = 162.11 μg/ml),揭示了 AgNPs 的抗糖尿病潜力。AgNPs 对恶性人类肾脏细胞具有潜在的细胞毒性活性(IC50 = 244.57 µg/ml)。此外,AgNPs 还对革兰氏阴性(大肠杆菌)和革兰氏阳性(金黄色葡萄球菌)细菌菌株表现出卓越的抗菌活性。有趣的是,与自由基清除浓度和 α 淀粉酶抑制浓度相比,AgNPs 的细胞毒性和抗菌活性浓度要高得多。因此,我们的发现阐明了绿色合成的 AgNPs 在不同治疗领域的应用范围(剂量依赖性),可进一步应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1