Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction. The data of water quality parameters revealed high removal rates of chemical oxygen demand and NH4+-N in all the sites. Proteobacteria were absolutely dominant in all the sites. Thauera, Nitrospira, Ferribacterium, and Dechloromonas were the main functional genera responsible for nitrogen and phosphorus removal at the tested sites. Nitrospira includes conventional nitrite-oxidizing bacteria and complete ammonia-oxidizing bacteria. Among them, 26 genes related to nitrogen metabolism were retrieved according to gene prediction, which verified the good NH4+-N removal efficiency at the tested sites. This study focuses on the analysis of microbial community structure and functional characteristics of MBR-based treatment systems for rural wastewater treatment, thereby providing a microbial basis for improving rural wastewater treatment processes.
{"title":"Microbial community structure and functional characteristics in a membrane bioreactor used for real rural wastewater treatment.","authors":"Yanyan Wang, Shaoqing Su, Haojie Qiu, Liang Guo, Weihua Zhao, Yingying Qin, Chao Wang, Zhisheng Zhao, Xiang Ding, Guoli Liu, Tiantian Hu, Zenghua Wang","doi":"10.1007/s00449-025-03129-1","DOIUrl":"https://doi.org/10.1007/s00449-025-03129-1","url":null,"abstract":"<p><p>Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction. The data of water quality parameters revealed high removal rates of chemical oxygen demand and NH<sub>4</sub><sup>+</sup>-N in all the sites. Proteobacteria were absolutely dominant in all the sites. Thauera, Nitrospira, Ferribacterium, and Dechloromonas were the main functional genera responsible for nitrogen and phosphorus removal at the tested sites. Nitrospira includes conventional nitrite-oxidizing bacteria and complete ammonia-oxidizing bacteria. Among them, 26 genes related to nitrogen metabolism were retrieved according to gene prediction, which verified the good NH<sub>4</sub><sup>+</sup>-N removal efficiency at the tested sites. This study focuses on the analysis of microbial community structure and functional characteristics of MBR-based treatment systems for rural wastewater treatment, thereby providing a microbial basis for improving rural wastewater treatment processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1007/s00449-025-03128-2
Chorok Jeong, Seung Hee Han, Chang Gyu Lim, Sun Chang Kim, Ki Jun Jeong
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E. coli H-02 strain, which was previously engineered for sufficient supplementation of L-phenylalanine, the main precursor of p-CA. For the bioconversion of L-Phe to p-CA, we constructed and optimized an expression system for phenylalanine ammonia lyase (SmPAL), codon-optimized cinnamate 4-hydroxylase (AtC4H), and its redox partner, cytochrome P450 reductase (AtCPR1). We confirmed that the engineered cell showed higher production of p-CA at 30 °C and the addition of 0.5 mM 5-aminolevulinic acid could increase the production titer further. Subsequently, the main pathways of acetic acid (poxB and pta-ackA) were eliminated to reduce its accumulation and restore cell growth. Next, to increase the available pool of cofactor (NADPH), the co-expression system of the zwf gene in the pentose phosphate pathway (PPP) was integrated into genome and the expression level was optimized with synthetic promoters. Finally, by optimizing fed-batch culture in a 5 L-scale bioreactor, the engineered strain achieved 1.5 g/L p-CA with a productivity of 31.8 mg/L/h.
{"title":"Metabolic engineering of Escherichia coli for enhanced production of p-coumaric acid via L-phenylalanine biosynthesis pathway.","authors":"Chorok Jeong, Seung Hee Han, Chang Gyu Lim, Sun Chang Kim, Ki Jun Jeong","doi":"10.1007/s00449-025-03128-2","DOIUrl":"https://doi.org/10.1007/s00449-025-03128-2","url":null,"abstract":"<p><p>p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E. coli H-02 strain, which was previously engineered for sufficient supplementation of L-phenylalanine, the main precursor of p-CA. For the bioconversion of L-Phe to p-CA, we constructed and optimized an expression system for phenylalanine ammonia lyase (SmPAL), codon-optimized cinnamate 4-hydroxylase (AtC4H), and its redox partner, cytochrome P450 reductase (AtCPR1). We confirmed that the engineered cell showed higher production of p-CA at 30 °C and the addition of 0.5 mM 5-aminolevulinic acid could increase the production titer further. Subsequently, the main pathways of acetic acid (poxB and pta-ackA) were eliminated to reduce its accumulation and restore cell growth. Next, to increase the available pool of cofactor (NADPH), the co-expression system of the zwf gene in the pentose phosphate pathway (PPP) was integrated into genome and the expression level was optimized with synthetic promoters. Finally, by optimizing fed-batch culture in a 5 L-scale bioreactor, the engineered strain achieved 1.5 g/L p-CA with a productivity of 31.8 mg/L/h.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s00449-025-03127-3
André D Valkenburg, George M Teke, Eugéne van Rensburg, Robert W M Pott
Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids. Hence, this work proposes the development of a bioprocess that involves the microbial production and high-level chromatographic purification of CBLs from a submerged culture of Ustilago maydis DSM 4500. After a highly purified CBL product was obtained, the factors affecting the production of this glycolipid were investigated. It was demonstrated that U. maydis DSM 4500 produces a specific structural variant of CBLs at a concentration of 1.36 g/L on an optimized the growth medium. Also, it was established that when the C/N ratio was decreased, the CBL titer increased by 2.3-fold. Furthermore, supplementing the culture with ZnSO4 at a concentration of 0.04 mg/L further increased CBL concentration to 4.95 g/L, representing the highest CBL titer achieved in a single-stage bioprocess to date. This study developed a methodology for utilizing U. maydis as a high-level CBL producer, which could challenge other familiar CBL producers, such as Sporisorium scitamineum and Cryptococcus humicola.
{"title":"Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500.","authors":"André D Valkenburg, George M Teke, Eugéne van Rensburg, Robert W M Pott","doi":"10.1007/s00449-025-03127-3","DOIUrl":"https://doi.org/10.1007/s00449-025-03127-3","url":null,"abstract":"<p><p>Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids. Hence, this work proposes the development of a bioprocess that involves the microbial production and high-level chromatographic purification of CBLs from a submerged culture of Ustilago maydis DSM 4500. After a highly purified CBL product was obtained, the factors affecting the production of this glycolipid were investigated. It was demonstrated that U. maydis DSM 4500 produces a specific structural variant of CBLs at a concentration of 1.36 g/L on an optimized the growth medium. Also, it was established that when the C/N ratio was decreased, the CBL titer increased by 2.3-fold. Furthermore, supplementing the culture with ZnSO<sub>4</sub> at a concentration of 0.04 mg/L further increased CBL concentration to 4.95 g/L, representing the highest CBL titer achieved in a single-stage bioprocess to date. This study developed a methodology for utilizing U. maydis as a high-level CBL producer, which could challenge other familiar CBL producers, such as Sporisorium scitamineum and Cryptococcus humicola.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1007/s00449-024-03124-y
Xue Xiao, Yu Fu, Daojing Zhang, Shuhong Gao
Ascomycin (FK520) is a 23-membered macrolide antibiotic primarily produced by the Streptomyces hygroscopicus var. ascomyceticus. Structurally similar to tacrolimus and rapamycin, it serves as an effective immunosuppressant widely used in the treatment of rejection reactions after organ transplantation and certain autoimmune diseases. Currently, FK520 is mainly produced through microbial fermentation, but its yield remains low. Since the gene fkbR2 is a regulatory gene within the FK520 biosynthesis gene cluster that has not been studied, this paper focuses on the overexpression of the gene fkbR2 in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 (WT). By constructing a strain with overexpressed fkbR2 gene, we initially obtained a high-yield strain R2-17 through shake flask fermentation, with a 28% increase in yield compared to WT. In the process of further improving the stability of the high-yield strain, this paper defines two indices: high-yield index and stability index. After two consecutive rounds of natural breeding, strain R2-17 achieved a high-yield index of 100% and a stability index of 80%. Finally, the high-yield strain R2-17-3-10 was successfully screened, and the yield was increased by 34% compared with the strain WT, reaching 686.47 mg/L. A comparative analysis between the high-yield strain R2-17-3-10 and the original strain WT revealed differences in fermentation process parameters such as FK520 synthesis rate, pH, bacterial growth, glycerol consumption rate, ammonia nitrogen level, and ammonium ion concentration. In addition, the transcription levels of genes involved in the synthesis of precursors 4,5-dihydroxycyclohex-1-enecarboxylic acid (fkbO), ethylmalonyl-CoA (fkbE, fkbU, fkbS), and pipecolic acid (fkbL), as well as pathway-specific regulatory genes (fkbN, fkbR1), were significantly increased at different time points in the high-yield strain R2-17-3-10. EMSAs analysis showed that the FkbR2 protein could not bind to the promoter region of above genes. This suggests that the gene fkbR2 may enhance the supply of FK520 synthetic precursors by indirectly regulating the transcription levels of these genes, thereby promoting an increase in FK520 production. These results demonstrate that modifying genes within the biosynthetic gene clusters of natural products can be successfully applied to increase the yields of industrially and clinically important compounds. However, it is found that fkbR2 gene is a regulatory gene that has not been fully studied, and it is worth further studying its regulatory mechanism.
{"title":"Enhancement of FK520 production in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 by overexpressing the regulatory gene fkbR2.","authors":"Xue Xiao, Yu Fu, Daojing Zhang, Shuhong Gao","doi":"10.1007/s00449-024-03124-y","DOIUrl":"https://doi.org/10.1007/s00449-024-03124-y","url":null,"abstract":"<p><p>Ascomycin (FK520) is a 23-membered macrolide antibiotic primarily produced by the Streptomyces hygroscopicus var. ascomyceticus. Structurally similar to tacrolimus and rapamycin, it serves as an effective immunosuppressant widely used in the treatment of rejection reactions after organ transplantation and certain autoimmune diseases. Currently, FK520 is mainly produced through microbial fermentation, but its yield remains low. Since the gene fkbR2 is a regulatory gene within the FK520 biosynthesis gene cluster that has not been studied, this paper focuses on the overexpression of the gene fkbR2 in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 (WT). By constructing a strain with overexpressed fkbR2 gene, we initially obtained a high-yield strain R2-17 through shake flask fermentation, with a 28% increase in yield compared to WT. In the process of further improving the stability of the high-yield strain, this paper defines two indices: high-yield index and stability index. After two consecutive rounds of natural breeding, strain R2-17 achieved a high-yield index of 100% and a stability index of 80%. Finally, the high-yield strain R2-17-3-10 was successfully screened, and the yield was increased by 34% compared with the strain WT, reaching 686.47 mg/L. A comparative analysis between the high-yield strain R2-17-3-10 and the original strain WT revealed differences in fermentation process parameters such as FK520 synthesis rate, pH, bacterial growth, glycerol consumption rate, ammonia nitrogen level, and ammonium ion concentration. In addition, the transcription levels of genes involved in the synthesis of precursors 4,5-dihydroxycyclohex-1-enecarboxylic acid (fkbO), ethylmalonyl-CoA (fkbE, fkbU, fkbS), and pipecolic acid (fkbL), as well as pathway-specific regulatory genes (fkbN, fkbR1), were significantly increased at different time points in the high-yield strain R2-17-3-10. EMSAs analysis showed that the FkbR2 protein could not bind to the promoter region of above genes. This suggests that the gene fkbR2 may enhance the supply of FK520 synthetic precursors by indirectly regulating the transcription levels of these genes, thereby promoting an increase in FK520 production. These results demonstrate that modifying genes within the biosynthetic gene clusters of natural products can be successfully applied to increase the yields of industrially and clinically important compounds. However, it is found that fkbR2 gene is a regulatory gene that has not been fully studied, and it is worth further studying its regulatory mechanism.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1007/s00449-024-03125-x
Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.
{"title":"Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.","authors":"Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun","doi":"10.1007/s00449-024-03125-x","DOIUrl":"https://doi.org/10.1007/s00449-024-03125-x","url":null,"abstract":"<p><p>The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1007/s00449-024-03115-z
Hadeer E Ali, Bahaa A Hemdan, Mehrez E El-Naggar, Mohamed Azab El-Liethy, Dipak A Jadhav, Hoda H El-Hendawy, M Ali, Gamila E El-Taweel
The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance. Microbial fuel cells (MFCs) provide a viable option by producing power from the oxidation of organic and biodegradable chemicals using microorganisms as natural catalysts. This technology has sparked widespread attention due to its combined potential to cleanse wastewater and recover energy. The review presents a complete examination of current advances in MFCs technology, with a focus on the crucial role of anode materials in improving their performance. Moreover, different anode materials and their nanoscale modifications are being studied to boost MFC efficiency. This current review also focused on the effects of surface modifications and different anode compositions on power generation and system stability. It also investigates the electrochemical principles behind these enhancements, providing insights into the economic potential of MFCs. MFCs provide a long-term solution to energy and environmental issues by addressing both wastewater treatment and energy production.
{"title":"Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology.","authors":"Hadeer E Ali, Bahaa A Hemdan, Mehrez E El-Naggar, Mohamed Azab El-Liethy, Dipak A Jadhav, Hoda H El-Hendawy, M Ali, Gamila E El-Taweel","doi":"10.1007/s00449-024-03115-z","DOIUrl":"10.1007/s00449-024-03115-z","url":null,"abstract":"<p><p>The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance. Microbial fuel cells (MFCs) provide a viable option by producing power from the oxidation of organic and biodegradable chemicals using microorganisms as natural catalysts. This technology has sparked widespread attention due to its combined potential to cleanse wastewater and recover energy. The review presents a complete examination of current advances in MFCs technology, with a focus on the crucial role of anode materials in improving their performance. Moreover, different anode materials and their nanoscale modifications are being studied to boost MFC efficiency. This current review also focused on the effects of surface modifications and different anode compositions on power generation and system stability. It also investigates the electrochemical principles behind these enhancements, providing insights into the economic potential of MFCs. MFCs provide a long-term solution to energy and environmental issues by addressing both wastewater treatment and energy production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm. diameter suspended in the supernatant were quantified using a nano-flow cytometry method. A computational fluid dynamics (CFD) model was developed to evaluate the impact of feed flow rate and particle count on the transmembrane pressure (TMP). Then a steady-state discrete phase model was applied to incorporate particles into the model and simulate the particles deposition over the membrane wall. The results showed an increase in the number of particles and the membrane resistance along the time course of the perfusion process. The CFD model illustrated that more particle deposition was observed at lower feed stream flow rates. The fraction of deposited particle was reduced by > 50% when the feed flow rate was increased from 35 ml/min to 300 ml/min. Our findings suggest that the total number of subvisible particles has a significant impact on TMP and membrane resistance and, thus, could play a major role in the mechanism of membrane fouling. CFD modeling can be a useful tool to predict the behavior of a process in a specific membrane. CFD simulations could also be used to optimize process parameters to improve membrane cleanability, reduce particle deposition, and reduce the risk of membrane fouling.
{"title":"Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.","authors":"Hamideh Hayati, Caitlin Kurtz, Yu Feng, Sarwat Khattak","doi":"10.1007/s00449-024-03112-2","DOIUrl":"https://doi.org/10.1007/s00449-024-03112-2","url":null,"abstract":"<p><p>Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm. diameter suspended in the supernatant were quantified using a nano-flow cytometry method. A computational fluid dynamics (CFD) model was developed to evaluate the impact of feed flow rate and particle count on the transmembrane pressure (TMP). Then a steady-state discrete phase model was applied to incorporate particles into the model and simulate the particles deposition over the membrane wall. The results showed an increase in the number of particles and the membrane resistance along the time course of the perfusion process. The CFD model illustrated that more particle deposition was observed at lower feed stream flow rates. The fraction of deposited particle was reduced by > 50% when the feed flow rate was increased from 35 ml/min to 300 ml/min. Our findings suggest that the total number of subvisible particles has a significant impact on TMP and membrane resistance and, thus, could play a major role in the mechanism of membrane fouling. CFD modeling can be a useful tool to predict the behavior of a process in a specific membrane. CFD simulations could also be used to optimize process parameters to improve membrane cleanability, reduce particle deposition, and reduce the risk of membrane fouling.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-24DOI: 10.1007/s00449-024-03090-5
Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji
The microalgal-bacterial granular sludge (MBGS) process is attracting attention as a green wastewater treatment technology. However, research on the application of MBGS in lake water remediation is limited. Thus, this experiment investigated the feasibility and the efficacy of the MBGS process for the treatment of natural lake water in a continuous-flow tubular reactor. The average removal efficiencies of COD, NH4+-N, NO3--N, NO2--N, TN, PO43--P, TP, and turbidity by MBGS system in the day/night cycles were 50.10/61.39%, 63.52/75.23%, 43.37/73.57%, 90.72/93.48%, 78.30/80.02%, 71.13/74.62%, 65.08/70.57%, 92.32/89.84%, respectively. As the experiment progressed, the total chlorophyll content in MBGS decreased as the granule size increased, while the extracellular polymeric substances content increased, suggesting that the lake water contributed to bacterial growth and favored the stability of MBGS. Moreover, the eukaryotic microorganisms were dominated by Chlorophyta and Rotifera, and prokaryotic microorganisms were dominated by Proteobacteria in MBGS. By promoting the decomposition of various organic compounds in the lake water and inhibiting sludge expansion, these microorganisms help the MBGS system to maintain excellent granular characteristics and performance. Overall, the MBGS system proved to be a feasible option for the remediation of natural lake waters.
{"title":"Evaluating the efficacy of microalgal-bacterial granular sludge system in lake water remediation.","authors":"Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji","doi":"10.1007/s00449-024-03090-5","DOIUrl":"10.1007/s00449-024-03090-5","url":null,"abstract":"<p><p>The microalgal-bacterial granular sludge (MBGS) process is attracting attention as a green wastewater treatment technology. However, research on the application of MBGS in lake water remediation is limited. Thus, this experiment investigated the feasibility and the efficacy of the MBGS process for the treatment of natural lake water in a continuous-flow tubular reactor. The average removal efficiencies of COD, NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>-</sup>-N, NO<sub>2</sub><sup>-</sup>-N, TN, PO<sub>4</sub><sup>3-</sup>-P, TP, and turbidity by MBGS system in the day/night cycles were 50.10/61.39%, 63.52/75.23%, 43.37/73.57%, 90.72/93.48%, 78.30/80.02%, 71.13/74.62%, 65.08/70.57%, 92.32/89.84%, respectively. As the experiment progressed, the total chlorophyll content in MBGS decreased as the granule size increased, while the extracellular polymeric substances content increased, suggesting that the lake water contributed to bacterial growth and favored the stability of MBGS. Moreover, the eukaryotic microorganisms were dominated by Chlorophyta and Rotifera, and prokaryotic microorganisms were dominated by Proteobacteria in MBGS. By promoting the decomposition of various organic compounds in the lake water and inhibiting sludge expansion, these microorganisms help the MBGS system to maintain excellent granular characteristics and performance. Overall, the MBGS system proved to be a feasible option for the remediation of natural lake waters.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"17-26"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-06DOI: 10.1007/s00449-024-03097-y
Thalakulam Shanmugam Boopathi, Asha Rajiv, T S Geetika Madan Patel, Lakshay Bareja, Saleh H Salmen, Hossam M Aljawdah, Palanisamy Arulselvan, Jagadeesh Suriyaprakash, Indumathi Thangavelu
Due to the prevalence of drug-resistant bacteria and the ongoing shortage of novel antibiotics as well as the challenge of treating breast cancer, the therapeutic and clinical sectors are consistently seeking effective nanomedicines. The incorporation of metal oxide nanoparticles with biological macromolecules and an organic compound emerges as a promising strategy to enhance breast cancer treatment and antibacterial activity against drug-resistant bacteria in various biomedical applications. This study aims to synthesize a unique nanocomposite consisting of CeO2 embedded with folic acid and carboxymethyl cellulose (CFC NC) via a green precipitation method using Moringa oleifera. Various spectroscopic and microscopic analyses are utilized to decipher the physicochemical characteristics of CFC NC and active phytocompounds of Moringa oleifera. Antibacterial study against MRSA (Methicillin-resistant Staphylococcus aureus) demonstrated a higher activity (95.6%) for CFC NC compared to its counterparts. The impact is attributed to reactive oxygen species (ROS), which induces a strong photo-oxidative stress, leading to the destruction of bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CFC NC are determined as 600 µg/mL and 1000 µg/mL, respectively. The anticancer activity against breast cancer cell resulted in the IC50 concentration of 10.8 μg/mL and 8.2 μg/mL for CeO2 and CFC NC respectively.The biocompatibility test was conducted against fibroblast cells and found 85% of the cells viable, with less toxicity. Therefore, the newly synthesized CFC NC has potential applications in healthcare and industry, enhancing human health conditions.
{"title":"Efficient one-pot green synthesis of carboxymethyl cellulose/folic acid embedded ultrafine CeO<sub>2</sub> nanocomposite and its superior multi-drug resistant antibacterial activity and anticancer activity.","authors":"Thalakulam Shanmugam Boopathi, Asha Rajiv, T S Geetika Madan Patel, Lakshay Bareja, Saleh H Salmen, Hossam M Aljawdah, Palanisamy Arulselvan, Jagadeesh Suriyaprakash, Indumathi Thangavelu","doi":"10.1007/s00449-024-03097-y","DOIUrl":"10.1007/s00449-024-03097-y","url":null,"abstract":"<p><p>Due to the prevalence of drug-resistant bacteria and the ongoing shortage of novel antibiotics as well as the challenge of treating breast cancer, the therapeutic and clinical sectors are consistently seeking effective nanomedicines. The incorporation of metal oxide nanoparticles with biological macromolecules and an organic compound emerges as a promising strategy to enhance breast cancer treatment and antibacterial activity against drug-resistant bacteria in various biomedical applications. This study aims to synthesize a unique nanocomposite consisting of CeO<sub>2</sub> embedded with folic acid and carboxymethyl cellulose (CFC NC) via a green precipitation method using Moringa oleifera. Various spectroscopic and microscopic analyses are utilized to decipher the physicochemical characteristics of CFC NC and active phytocompounds of Moringa oleifera. Antibacterial study against MRSA (Methicillin-resistant Staphylococcus aureus) demonstrated a higher activity (95.6%) for CFC NC compared to its counterparts. The impact is attributed to reactive oxygen species (ROS), which induces a strong photo-oxidative stress, leading to the destruction of bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CFC NC are determined as 600 µg/mL and 1000 µg/mL, respectively. The anticancer activity against breast cancer cell resulted in the IC<sub>50</sub> concentration of 10.8 μg/mL and 8.2 μg/mL for CeO<sub>2</sub> and CFC NC respectively.The biocompatibility test was conducted against fibroblast cells and found 85% of the cells viable, with less toxicity. Therefore, the newly synthesized CFC NC has potential applications in healthcare and industry, enhancing human health conditions.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"121-131"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-03DOI: 10.1007/s00449-024-03100-6
Yan Fang, Xi Chen, Zhen Sun, Xiaodan Yan, Lani Shi, Congcong Jin
Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.
{"title":"Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells.","authors":"Yan Fang, Xi Chen, Zhen Sun, Xiaodan Yan, Lani Shi, Congcong Jin","doi":"10.1007/s00449-024-03100-6","DOIUrl":"10.1007/s00449-024-03100-6","url":null,"abstract":"<p><p>Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"159-170"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}