首页 > 最新文献

Bioprocess and Biosystems Engineering最新文献

英文 中文
Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817 布氏左旋乳酸杆菌(Levilactobacillus brevis)CD0817 基于混合底物的 pH 自缓冲 GABA 发酵
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.1007/s00449-024-03088-z
Lingqin Wang, Mengya Jia, Dandan Gao, Haixing Li

The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (l-glutamic acid or l-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by Levilactobacillus brevis CD0817. This strategy features a mixture of neutral monosodium l-glutamate plus acidic l-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved l-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of Levilactobacillus brevis CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery l-glutamic acid (750 g/L), monosodium l-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO4·H2O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0–4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.

生物活性物质γ-氨基丁酸(GABA)的益生菌发酵是一个极具吸引力的研究课题。已报道的基于单一底物(l-谷氨酸或 l-谷氨酸钠)的 GABA 发酵方法仍有进一步改进的空间。在此,我们设计了一种 pH 自动缓冲策略,以促进 Levilactobacillus brevis CD0817 发酵 GABA。该策略以中性谷氨酸钠和酸性谷氨酸的混合物为底物。这种混合物可提供温和的初始 pH 值;此外,新溶解的 l-谷氨酸可自动抵消底物脱羧引起的 pH 值升高,从而保持 GABA 发酵所必需的酸度。本研究首先进行了烧瓶试验,以优化 Levilactobacillus brevis CD0817 的 GABA 发酵参数。优化后的参数在 10 升发酵罐中进行了进一步验证。烧瓶试验结果表明,合适的发酵培养基由粉末状 l-谷氨酸(750 g/L)、l-谷氨酸钠(34 g/L [0.2 mol/L])、葡萄糖(5 g/L)、酵母提取物(35 g/L)、MnSO4-H2O(50 mg/L [0.3 mmol/L])和吐温 80(1.0 g/L)组成。适宜的发酵温度为 30 °C。发酵罐试验结果表明,GABA 在 0-4 小时内合成缓慢,32 小时内合成迅速,48 小时内达到 353.1 ± 8.3 g/L,pH 值从初始值 4.56 升至最终值 6.10。所提出的 pH 自动缓冲策略可能会在其他 GABA 发酵过程中得到推广。
{"title":"Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817","authors":"Lingqin Wang, Mengya Jia, Dandan Gao, Haixing Li","doi":"10.1007/s00449-024-03088-z","DOIUrl":"https://doi.org/10.1007/s00449-024-03088-z","url":null,"abstract":"<p>The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (<span>l</span>-glutamic acid or <span>l</span>-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by <i>Levilactobacillus brevis</i> CD0817. This strategy features a mixture of neutral monosodium <span>l</span>-glutamate plus acidic <span>l</span>-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved <span>l</span>-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of <i>Levilactobacillus brevis</i> CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery <span>l</span>-glutamic acid (750 g/L), monosodium <span>l</span>-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO<sub>4</sub>·H<sub>2</sub>O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0–4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing endophytic Penicillium oxalicum as a source of lignocellulolytic enzymes for enhanced hydrolysis of biorefinery relevant pretreated rice straw. 开发草青霉内生菌作为木质纤维素分解酶的来源,以增强生物精炼相关预处理稻草的水解作用。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.1007/s00449-024-03085-2
Gaurav Sharma, Baljit Kaur, Yashika Raheja, Amarjeet Kaur, Varinder Singh, Neha Basotra, Marcos Di Falco, Adrian Tsang, Bhupinder Singh Chadha

Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), β-glucosidase (β-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.

内生真菌是植物的共生体,能产生一系列复杂的酶,有效地将木质纤维素生物质分解成单体糖,是木质纤维素分解酶的新来源,在未来的生物炼制中具有巨大潜力。本研究报告了在有盐和无盐(1 M NaCl)条件下,通过浸没发酵和固态发酵(分别为 SmF 和 SSF),从柠檬中分离出的内生耐盐青霉菌株产生木质纤维素分解酶的潜力。基于 QTOF-LC/MS 的外蛋白组比较分析揭示了 CAZymes 的差异表达,在有 1 M 盐的情况下,GH6 和 GH7 家族的纤维生物水解酶含量更高。利用循环诱变和二倍体化的菌株改良计划,培育出了草甘膦高纤维素酶突变菌株。通过利用葡萄糖混合二糖(GMDs)作为诱导剂对培养条件进行统计优化,进一步提高了所培育菌株(POx-M35)的产酶量。这一优化过程产生的木质纤维素分解鸡尾酒含有高滴度(U/mL)的内切葡聚糖酶(EG)(146.16)、纤维生物水解酶(CBHI)(6.99)、β-葡萄糖苷酶(β-G)(26.21)、木聚糖酶(336.05)和 FPase(2.02 U/mL),分别比野生 HP1 的酶滴度高 5.47、5.54、8.55、4.96 和 4.39 倍。此外,通过将突变体 POx-M35 产生的分泌物与来自 Malbranchea cinnamomea 的木聚糖酶(GH10 和 GH11)混合而设计的木质纤维素分解鸡尾酒能高效水解未经酸洗预处理(UWAP)的水稻秸秆浆和轻度碱脱乙酰化(MAD)的水稻秸秆。这项研究强调了对新型真菌进行生物勘探和开发改良菌株的潜力,以优化木质纤维素分解鸡尾酒的生产和组成,这可能是推进生物质转化技术的一个重要决定因素。
{"title":"Developing endophytic Penicillium oxalicum as a source of lignocellulolytic enzymes for enhanced hydrolysis of biorefinery relevant pretreated rice straw.","authors":"Gaurav Sharma, Baljit Kaur, Yashika Raheja, Amarjeet Kaur, Varinder Singh, Neha Basotra, Marcos Di Falco, Adrian Tsang, Bhupinder Singh Chadha","doi":"10.1007/s00449-024-03085-2","DOIUrl":"https://doi.org/10.1007/s00449-024-03085-2","url":null,"abstract":"<p><p>Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), β-glucosidase (β-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for perfusion process design based on a “Grey-Box” kinetic model 基于 "灰箱 "动力学模型的灌注工艺设计新方法
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.1007/s00449-024-03082-5
Chenxi Gao, Weijian Zhang, Liang Zhao, Wen-Song Tan

Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the “theoretically optimal” operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 107 cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 108 cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.

灌注细胞培养模式近年来在生物制造领域引起了工业界的兴趣。由于采用了新技术,灌流培养工艺可以支持更高的细胞密度、更高的生产率和更长的工艺时间。然而,由于固有的操作复杂性和高运行成本,灌流培养工艺的开发和设计仍面临挑战。在此,我们介绍一种基于模型的方法,用于设计优化的中国仓鼠卵巢细胞灌流培养。首先,我们使用四批台式反应器连续灌流培养数据来拟合模型参数。然后,我们提出了基于模型的工艺设计方法,旨在快速找出 "理论上最优 "的操作参数组合(灌注速率和灌注培养基中的给料培养基比例),这些参数组合既能达到目标稳态VCD,又能在稳态期间使培养基成本和灌注速率最小化。同时,我们提出了基于模型的动态运行参数调整策略,以解决高浓度灌流介质的高渗透压抑制细胞生长的问题。此外,我们还采用了一种动态反馈控制方法来辅助这一策略,以防止潜在的营养耗竭情况。最后,我们在摇瓶半灌流培养(目标浓度为 5 × 107 cells/ml)和台式反应器连续灌流培养(目标浓度为 1.1 × 108 cells/ml)中测试了基于模型的流程设计方法的可行性。这种方法大大减少了工艺设计和开发所需的实验数量,从而加快了灌流模式细胞培养工艺的发展。
{"title":"A novel approach for perfusion process design based on a “Grey-Box” kinetic model","authors":"Chenxi Gao, Weijian Zhang, Liang Zhao, Wen-Song Tan","doi":"10.1007/s00449-024-03082-5","DOIUrl":"https://doi.org/10.1007/s00449-024-03082-5","url":null,"abstract":"<p>Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the “theoretically optimal” operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 10<sup>7</sup> cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 10<sup>8</sup> cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles. 在超声波作用下在金属有机框架中封装白色念珠菌脂肪酶 B,并利用它一锅合成 1,3,4,5 四代吡唑。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.1007/s00449-024-03083-4
Zeynab Rangraz, Ali Jafari, Mansour Shahedi, Mostafa M Amini, Zohreh Habibi

Encapsulating the enzyme in metal-organic frameworks (MOFs) is a convenient method to prepare MOF-enzyme biocomposite. In this study, Candida antarctica lipase B (CAL-B) was chosen to immobilize in Cu-BTC MOF under ultrasound irradiation. CAL-B was immobilized in Cu-BTC under ultrasound at 21 kHz and 11.4 W/cm2 and incubation. 98% of CAL-B was immobilized in Cu-BTC with 99 U/mg activity (threefold more active than the free CAL-B). The prepared biocomposite was characterized using FT-IR, XRD, TGA, SEM, EDX, and BET. The thermal and solvent stability of CAL-B@Cu-BTC was investigated. It was found that at a temperature of 55 ℃, CAL-B@Cu-BTC maintains its activity even after 2 h of incubation. Furthermore, in the presence of 20% and 50% concentrations of MeCN, THF, and DMF, CAL-B@Cu-BTC was found to have an activity of over 80%. A prepared biocatalyst was used to synthesize 1,3,4,5-tetrasubstituted pyrazole derivatives (50-75%) in a one-pot vessel, by adding phenyl hydrazine hydrochlorides, benzaldehydes, and dimethyl acetylenedicarboxylate.

将酶封装在金属有机框架(MOF)中是制备 MOF-酶生物复合材料的一种简便方法。本研究选择了白色念珠菌脂肪酶 B(CAL-B)在超声辐照下固定在 Cu-BTC MOF 中。在 21 kHz 和 11.4 W/cm2 的超声波和培养条件下,CAL-B 被固定在 Cu-BTC MOF 中。98% 的 CAL-B 被固定在 Cu-BTC 中,其活性为 99 U/mg (比游离的 CAL-B 活性高三倍)。利用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)、电离辐射分析(EDX)和BET对制备的生物复合材料进行了表征。研究了 CAL-B@Cu-BTC 的热稳定性和溶剂稳定性。结果发现,在 55 ℃ 的温度下,CAL-B@Cu-BTC 即使在培养 2 小时后仍能保持其活性。此外,在 20% 和 50% 浓度的 MeCN、THF 和 DMF 存在下,CAL-B@Cu-BTC 的活性超过 80%。利用制备的生物催化剂,通过加入苯肼盐酸盐、苯甲醛和乙酰二甲酸二甲酯,在一锅容器中合成了 1,3,4,5-四取代的吡唑衍生物(50-75%)。
{"title":"Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.","authors":"Zeynab Rangraz, Ali Jafari, Mansour Shahedi, Mostafa M Amini, Zohreh Habibi","doi":"10.1007/s00449-024-03083-4","DOIUrl":"https://doi.org/10.1007/s00449-024-03083-4","url":null,"abstract":"<p><p>Encapsulating the enzyme in metal-organic frameworks (MOFs) is a convenient method to prepare MOF-enzyme biocomposite. In this study, Candida antarctica lipase B (CAL-B) was chosen to immobilize in Cu-BTC MOF under ultrasound irradiation. CAL-B was immobilized in Cu-BTC under ultrasound at 21 kHz and 11.4 W/cm<sup>2</sup> and incubation. 98% of CAL-B was immobilized in Cu-BTC with 99 U/mg activity (threefold more active than the free CAL-B). The prepared biocomposite was characterized using FT-IR, XRD, TGA, SEM, EDX, and BET. The thermal and solvent stability of CAL-B@Cu-BTC was investigated. It was found that at a temperature of 55 ℃, CAL-B@Cu-BTC maintains its activity even after 2 h of incubation. Furthermore, in the presence of 20% and 50% concentrations of MeCN, THF, and DMF, CAL-B@Cu-BTC was found to have an activity of over 80%. A prepared biocatalyst was used to synthesize 1,3,4,5-tetrasubstituted pyrazole derivatives (50-75%) in a one-pot vessel, by adding phenyl hydrazine hydrochlorides, benzaldehydes, and dimethyl acetylenedicarboxylate.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-benevolent synthesis of ZnO-NPs and ZnO-MFs from Inula oculus-christi L. (Asteraceae) with effective antioxidant, antimicrobial, DNA cleavage, and decolorization efficiencies. 从 Inula oculus-christi L.(菊科)中以生态平衡的方式合成 ZnO-NPs 和 ZnO-MFs,具有有效的抗氧化、抗菌、DNA 裂解和脱色功效。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-02 DOI: 10.1007/s00449-024-03075-4
Umut Çelikoğlu, Emine Çelikoğlu, Muhammad Nauman Khan, Alevcan Kaplan

As a result of the changes occurring globally in recent years, millions of people are facing challenging and even life-threatening diseases such as cancer and the COVID-19 pandemic, among others. This phenomenon has spurred researchers towards developing and implementing innovative and environmentally friendly scientific methods, merging disciplines with significant technological potential, such as nanotechnology with medicinal plants. Therefore, the focus of this research is to synthesize zinc nanoparticles (ZnO-NPs) and microflowers (ZnO-MFs) using extracts of the medicinal plant I. oculus christi prepared in n-hexane and methanol as new bioreduction and capping agents through a simple and environmentally friendly chemical approach. Optical, thermal, and morphological structural analyses of ZnO-NPs and ZnO-MFs were conducted using Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM). Metabolic profiles of extracts from different plant parts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and supported by visualization of contents through Principal Component Analysis (PCA), hierarchical cluster analysis heatmaps, and Pearson correlation graphs. Interestingly, ZnO-NPs and ZnO-MFs exhibited strong antioxidant properties and demonstrated particularly potent antimicrobial activity against Micrococcus luteus NRRL B-4375, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 strains compared to standard antibiotics. Furthermore, ZnO-NPs and ZnO-MFs showed excellent plasmid DNA-cleavage activity of pBR322 with increasing doses. The photocatalytic performance of the synthesized ZnO-NPs and ZnO-MFs was evaluated for methylene blue (MB), congo red (CR), and safranin-O (SO) dyes, demonstrating remarkable color removal efficiency. Overall, the results provide a promising avenue for the green synthesis of ZnO-NPs and ZnO-MFs using I. oculus-christi L. inflorescence and pappus extracts, potentially revolutionizing biopharmaceutical and catalytic applications in these fields.

由于近年来全球发生的变化,数以百万计的人正面临着挑战,甚至是威胁生命的疾病,如癌症和 COVID-19 大流行病等。这一现象促使研究人员开发和实施创新、环保的科学方法,将具有巨大技术潜力的学科(如纳米技术和药用植物)融合在一起。因此,本研究的重点是利用在正己烷和甲醇中制备的药用植物 I. oculus christi 的提取物作为新的生物还原剂和封端剂,通过简单、环保的化学方法合成锌纳米粒子(ZnO-NPs)和微花(ZnO-MFs)。使用紫外-可见光谱(UV-Vis)、傅立叶变换红外光谱(FT-IR)、热重分析(TGA)和场发射扫描电子显微镜(FE-SEM)对 ZnO-NPs 和 ZnO-MFs 进行了光学、热学和形态结构分析。利用气相色谱-质谱联用仪(GC-MS)分析了不同植物部位提取物的代谢概况,并通过主成分分析(PCA)、分层聚类分析热图和皮尔逊相关图对其内容进行了可视化。有趣的是,与标准抗生素相比,ZnO-NPs 和 ZnO-MFs 具有很强的抗氧化性,对黄体微球菌 NRRL B-4375、大肠杆菌 ATCC 25922 和白色念珠菌 ATCC 10231 株具有特别强的抗菌活性。此外,随着剂量的增加,ZnO-NPs 和 ZnO-MFs 对 pBR322 的质粒 DNA 也表现出卓越的清除活性。评估了合成的 ZnO-NPs 和 ZnO-MFs 对亚甲蓝(MB)、刚果红(CR)和黄芩苷-O(SO)染料的光催化性能,结果表明它们具有显著的除色效率。总之,研究结果为利用 I. oculus-christi L. 的花序和花被提取物绿色合成 ZnO-NPs 和 ZnO-MFs 提供了一条前景广阔的途径,有可能彻底改变这些领域的生物制药和催化应用。
{"title":"Eco-benevolent synthesis of ZnO-NPs and ZnO-MFs from Inula oculus-christi L. (Asteraceae) with effective antioxidant, antimicrobial, DNA cleavage, and decolorization efficiencies.","authors":"Umut Çelikoğlu, Emine Çelikoğlu, Muhammad Nauman Khan, Alevcan Kaplan","doi":"10.1007/s00449-024-03075-4","DOIUrl":"https://doi.org/10.1007/s00449-024-03075-4","url":null,"abstract":"<p><p>As a result of the changes occurring globally in recent years, millions of people are facing challenging and even life-threatening diseases such as cancer and the COVID-19 pandemic, among others. This phenomenon has spurred researchers towards developing and implementing innovative and environmentally friendly scientific methods, merging disciplines with significant technological potential, such as nanotechnology with medicinal plants. Therefore, the focus of this research is to synthesize zinc nanoparticles (ZnO-NPs) and microflowers (ZnO-MFs) using extracts of the medicinal plant I. oculus christi prepared in n-hexane and methanol as new bioreduction and capping agents through a simple and environmentally friendly chemical approach. Optical, thermal, and morphological structural analyses of ZnO-NPs and ZnO-MFs were conducted using Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM). Metabolic profiles of extracts from different plant parts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and supported by visualization of contents through Principal Component Analysis (PCA), hierarchical cluster analysis heatmaps, and Pearson correlation graphs. Interestingly, ZnO-NPs and ZnO-MFs exhibited strong antioxidant properties and demonstrated particularly potent antimicrobial activity against Micrococcus luteus NRRL B-4375, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 strains compared to standard antibiotics. Furthermore, ZnO-NPs and ZnO-MFs showed excellent plasmid DNA-cleavage activity of pBR322 with increasing doses. The photocatalytic performance of the synthesized ZnO-NPs and ZnO-MFs was evaluated for methylene blue (MB), congo red (CR), and safranin-O (SO) dyes, demonstrating remarkable color removal efficiency. Overall, the results provide a promising avenue for the green synthesis of ZnO-NPs and ZnO-MFs using I. oculus-christi L. inflorescence and pappus extracts, potentially revolutionizing biopharmaceutical and catalytic applications in these fields.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection methods for antibiotics in wastewater: a review. 废水中抗生素的检测方法:综述。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-22 DOI: 10.1007/s00449-024-03033-0
Yuting Luo, Yiwei Sun, Xiuxia Wei, Yuyang He, Haoxiang Wang, Zewen Cui, Jiaqi Ma, Xingcai Liu, Ruxin Shu, Huaqing Lin, Dongpo Xu

Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.

抗生素具有抗菌和杀菌作用,因此被广泛用作杀菌剂。但是,必须控制其用量。如果抗生素用量过多,就不能被完全代谢和吸收,会污染环境,对人体健康造成很大影响。许多抗生素通常会残留在工厂或水产养殖废水中污染环境,因此检测废水中抗生素的含量至关重要。本文总结了几种常见的抗生素检测方法和预处理步骤。废水中抗生素的检测方法主要有免疫分析法、仪器分析法和传感器法。研究表明,免疫测定法可以检测出抗生素浓度不足的情况,但受外界因素影响,容易产生误差。仪器分析法的检测速度快,但重复性差,价格高,操作复杂。传感器是目前研究较多的一种方法,包括电化学传感器、光学传感器、生物传感器、光电化学传感器、表面等离子体共振传感器等。它具有检测速度快、准确度高、灵敏度强等优点。但传感器的再现性和稳定性较差。目前,还没有一种方法能全面整合这些优点。本文旨在回顾 2020 年至今废水中抗生素的富集和检测方法。本文还旨在为该领域未来的研究方向提供一些思路。
{"title":"Detection methods for antibiotics in wastewater: a review.","authors":"Yuting Luo, Yiwei Sun, Xiuxia Wei, Yuyang He, Haoxiang Wang, Zewen Cui, Jiaqi Ma, Xingcai Liu, Ruxin Shu, Huaqing Lin, Dongpo Xu","doi":"10.1007/s00449-024-03033-0","DOIUrl":"10.1007/s00449-024-03033-0","url":null,"abstract":"<p><p>Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Psidium guajav-mediated zinc oxide nanoparticles as a multifunctional, microbicidal, antioxidant and antiproliferative agent against destructive pathogens. 瓜子黄酮介导的纳米氧化锌颗粒是一种多功能杀菌、抗氧化和抗增殖剂,可对抗破坏性病原体。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-27 DOI: 10.1007/s00449-024-03052-x
P Prapula Thejashwini, R Chandrika, M C Madhusudhan, Shreya M Joshi, Daoud Ali, Saud Alarifi, Sudisha Jogaiah, Nagaraja Geetha

Bio-inspired zinc oxide nanoparticles are gaining immense interest due to their safety, low cost, biocompatibility, and broad biological properties. In recent years, much research has been focused on plant-based nanoparticles, mainly for their eco-friendly, facile, and non-toxic character. Hence, the current study emphasized a bottom-up synthesis of zinc oxide nanoparticles (ZnO NPs) from Psidium guajava aqueous leaf extract and evaluation of its biological properties. The structural characteristic features of biosynthesized ZnO NPs were confirmed using various analytical methods, such as UV-Vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The synthesized ZnO NPs exhibited a hydrodynamic shape with an average particle size of 11.6-80.2 nm. A significant antimicrobial efficiency with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 40 and 27 µg/ml for Enterococcus faecalis, followed by 30 and 40 µg/ml for Staphylococcus aureus, 20 and 30 µg/ml for Staphylococcus mutans, 30 µg/ml for Candida albicans was observed by ZnO NPs. Additionally, they showed significant breakdown of biofilms of Streptococcus mutans and Candida albicans indicating their future value in drug-resistance research. Furthermore, an excellent dose-dependent activity of antioxidant property was noticed with an IC50 of 9.89 µg/ml. The antiproliferative potential of the ZnO NPs was indicated by the viability of MDA MB 231 cells, which showed a drastic decrease in response to increased concentrations of biosynthesized ZnO NPs. Thus, the present results open up vistas to explore their pharmaceutical potential for the development of targeted anticancer drugs in the future.

生物启发的氧化锌纳米粒子因其安全、低成本、生物相容性和广泛的生物特性而备受关注。近年来,许多研究都集中在植物基纳米粒子上,主要是因为它们具有环保、简便和无毒的特点。因此,本研究强调从番石榴叶水提取物中自下而上合成氧化锌纳米粒子(ZnO NPs),并评估其生物特性。本研究采用多种分析方法,如紫外可见光谱、X射线衍射(XRD)、能量色散X射线分析(EDX)、傅立叶变换红外光谱(FT-IR)、动态光散射(DLS)、扫描电子显微镜(SEM)和高分辨率透射电子显微镜(HR-TEM),证实了生物合成的氧化锌纳米粒子的结构特征。合成的 ZnO NPs 呈流体力学形状,平均粒径为 11.6-80.2 nm。氧化锌氮氧化物具有明显的抗菌效果,对粪肠球菌的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)分别为 40 微克/毫升和 27 微克/毫升,对金黄色葡萄球菌的抑菌浓度分别为 30 微克/毫升和 40 微克/毫升,对变异葡萄球菌的抑菌浓度分别为 20 微克/毫升和 30 微克/毫升,对白色念珠菌的抑菌浓度分别为 30 微克/毫升。此外,氧化锌纳米粒子对变异葡萄球菌和白色念珠菌的生物膜也有明显的破坏作用,这表明了氧化锌纳米粒子在耐药性研究中的未来价值。此外,它们还具有出色的剂量依赖性抗氧化活性,其 IC50 值为 9.89 µg/ml。氧化锌纳米粒子的抗增殖潜力体现在 MDA MB 231 细胞的存活率上,随着生物合成氧化锌纳米粒子浓度的增加,细胞存活率急剧下降。因此,目前的研究结果为今后探索其制药潜力、开发靶向抗癌药物开辟了前景。
{"title":"Psidium guajav-mediated zinc oxide nanoparticles as a multifunctional, microbicidal, antioxidant and antiproliferative agent against destructive pathogens.","authors":"P Prapula Thejashwini, R Chandrika, M C Madhusudhan, Shreya M Joshi, Daoud Ali, Saud Alarifi, Sudisha Jogaiah, Nagaraja Geetha","doi":"10.1007/s00449-024-03052-x","DOIUrl":"10.1007/s00449-024-03052-x","url":null,"abstract":"<p><p>Bio-inspired zinc oxide nanoparticles are gaining immense interest due to their safety, low cost, biocompatibility, and broad biological properties. In recent years, much research has been focused on plant-based nanoparticles, mainly for their eco-friendly, facile, and non-toxic character. Hence, the current study emphasized a bottom-up synthesis of zinc oxide nanoparticles (ZnO NPs) from Psidium guajava aqueous leaf extract and evaluation of its biological properties. The structural characteristic features of biosynthesized ZnO NPs were confirmed using various analytical methods, such as UV-Vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The synthesized ZnO NPs exhibited a hydrodynamic shape with an average particle size of 11.6-80.2 nm. A significant antimicrobial efficiency with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 40 and 27 µg/ml for Enterococcus faecalis, followed by 30 and 40 µg/ml for Staphylococcus aureus, 20 and 30 µg/ml for Staphylococcus mutans, 30 µg/ml for Candida albicans was observed by ZnO NPs. Additionally, they showed significant breakdown of biofilms of Streptococcus mutans and Candida albicans indicating their future value in drug-resistance research. Furthermore, an excellent dose-dependent activity of antioxidant property was noticed with an IC<sub>50</sub> of 9.89 µg/ml. The antiproliferative potential of the ZnO NPs was indicated by the viability of MDA MB 231 cells, which showed a drastic decrease in response to increased concentrations of biosynthesized ZnO NPs. Thus, the present results open up vistas to explore their pharmaceutical potential for the development of targeted anticancer drugs in the future.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair. 从海洋海绵中提取的生物二氧化硅和海绵蛋白三维打印支架:用于骨组织修复的遗传毒性和细胞毒性分析。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-13 DOI: 10.1007/s00449-024-03042-z
Karolyne Dos Santos Jorge Sousa, Amanda de Souza, Matheus de Almeida Cruz, Lindiane Eloisa de Lima, Giovanna do Espirito Santo, Gustavo Oliva Amaral, Renata Neves Granito, Ana Claudia Renno

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

从海洋海绵中提取的生物二氧化硅(BS)和海绵蛋白(SPG)因其促进骨再生的潜力而备受瞩目。此外,3D 打印技术可用于生产具有优化多孔结构的骨移植物,使细胞更好地附着、增殖和分化。因此,本研究旨在确定 BS 和 BS/SPG 三维打印支架的特性,并评估其体外生物效应。这些支架是用含有 4 重量百分比海藻酸钠的油墨打印的。通过 SEM、EDS、FTIR、孔隙率、质量损失评估和 pH 值测量分析了 BS 和 BS/SPG 三维打印支架的理化特性。在体外分析方面,使用 AlamarBlue® 分析法和共聚焦显微镜评估了 MC3T3-E1 细胞系的细胞活力,并分别通过微核试验和茜素红 S 评估了遗传毒性和矿化潜力。扫描电子显微镜分析显示了 BS 中的尖晶石、SPG 的纤维状结构以及浸泡期间的材料降解情况。傅立叶变换红外光谱(FTIR)显示,BS 样品中的峰值与氧化硅相对应,SPG 样品中的峰值与氧化碳和胺相对应。BS-SPG 支架显示出更高的孔隙率,而 BS 支架则显示出更大的质量损失。 pH 值测量结果表明,BS 引起的 pH 值显著下降,而 SPG 则在实验期间缓解了这一现象。体外研究表明,支架提取物具有生物相容性和无细胞毒性。此外,支架还能促进细胞分化。微核试验进一步证实了其无遗传毒性。这些研究结果表明,三维打印 BS 和 BS/SPG 支架可能具有理想的形态和理化特性,表明其具有体外生物相容性。
{"title":"3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair.","authors":"Karolyne Dos Santos Jorge Sousa, Amanda de Souza, Matheus de Almeida Cruz, Lindiane Eloisa de Lima, Giovanna do Espirito Santo, Gustavo Oliva Amaral, Renata Neves Granito, Ana Claudia Renno","doi":"10.1007/s00449-024-03042-z","DOIUrl":"10.1007/s00449-024-03042-z","url":null,"abstract":"<p><p>Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue<sup>®</sup> assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced low-cost lipopeptide biosurfactant production by Bacillus velezensis from residual glycerin. Velezensis 杆菌利用残留甘油生产低成本脂肽生物表面活性剂的能力得到增强。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-25 DOI: 10.1007/s00449-024-03051-y
Henrique A Brito, Amanda P Napp, Evandro Pereira, Evelise Bach, João V B Borowski, Luciane M P Passaglia, Vania M M Melo, Raphael Moreira, E Johan Foster, Fernanda C Lopes, Marilene H Vainstein

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.

生物表面活性剂(BSFs)是微生物利用各种碳源产生的分子,可应用于生物修复和石油回收。然而,生产成本限制了其大规模应用。本研究以残余甘油为底物,优化了 Velezensis 杆菌(菌株 MO13)的 BSFs 产量。在 5 升生物反应器中,采用球形二次中央复合设计(CCD)模型对碳源浓度(30 g/L)、温度(34 °C)、pH 值(7.2)、搅拌(239 rpm)和通气(0.775 vvm)进行了标准化。通过优化,BSFs 的最高产量达到了 1527.6 mg/L(表面活性剂)和 176.88 mg/L(伊曲肽),增加了三倍。此外,还评估了微生物发展、底物消耗、BSFs 浓度和表面张力对生物过程动态的影响。质谱 Q-TOF-MS 鉴定出了由 B. velezensis MO13 产生的五种表面活性剂和两种伊图灵同工酶。这项研究表明,利用工业废物作为微生物底物生产 BSF 取得了重大进展,其浓度超过了文献报道的浓度。
{"title":"Enhanced low-cost lipopeptide biosurfactant production by Bacillus velezensis from residual glycerin.","authors":"Henrique A Brito, Amanda P Napp, Evandro Pereira, Evelise Bach, João V B Borowski, Luciane M P Passaglia, Vania M M Melo, Raphael Moreira, E Johan Foster, Fernanda C Lopes, Marilene H Vainstein","doi":"10.1007/s00449-024-03051-y","DOIUrl":"10.1007/s00449-024-03051-y","url":null,"abstract":"<p><p>Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of gold nanoparticles by fungi and its potential in SERS. 真菌生物合成金纳米粒子及其在 SERS 中的应用潜力。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-26 DOI: 10.1007/s00449-024-03053-w
Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria

Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.

利用金纳米粒子(AuNPs)进行的表面增强拉曼光谱(SERS)在生物大分子和一些癌细胞的鉴定方面具有重要意义。为了寻找更环保的 NPs 合成替代品,我们评估了利用不同丝状真菌生产的 AuNPs 的 SERS 特性。AuNPs 是利用 Botrytis cinerea、Trichoderma atroviride、Trichoderma asperellum、Alternaria sp.和 Ganoderma sessile 的上清液合成的。紫外可见光谱(UV-Vis)对 AuNPs 进行了表征,以确定其特征性表面等离子体共振,其波长分别为 545 nm(B. cinerea)、550 nm(T. atroviride)、540 nm(T. asperellum)、530 nm(Alternaria sp.)和 525 nm(G. sessile)。通过透射电子显微镜(TEM)对形态、尺寸和晶体结构进行了表征;通过 Z 电位测量对胶体稳定性进行了评估。我们发现,在特定的培养条件下,可以获得球形和准球形的 AuNPs,其平均尺寸范围取决于真菌种类的上清液,分别为 92.9 nm(B. cinerea)、24.7 nm(T. atroviride)、16.4 nm(T. asperellum)、9.5 nm(Alternaria sp.)和 13.6 nm(G. sessile)。可以预见,这将对拉曼放大产生影响。我们使用波长为 532 nm 的微型拉曼光谱系统来评估 AuNPs 的 SERS 特征。我们选择亚甲基蓝作为目标分子,因为它在文献中已被广泛应用。我们的结果表明,用 T. atroviride、T. asperellum 和 Alternaria sp.的上清液合成的 AuNPs 产生了更强的 SERS 效果,增强因子(EF)分别为 20.9、28.8 和 35.46。这些结果很有希望,可以作为开发生物传感器的基础,提供一种方便、简单和低成本的绿色替代方法。
{"title":"Biosynthesis of gold nanoparticles by fungi and its potential in SERS.","authors":"Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria","doi":"10.1007/s00449-024-03053-w","DOIUrl":"10.1007/s00449-024-03053-w","url":null,"abstract":"<p><p>Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioprocess and Biosystems Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1