{"title":"Factors affecting the incidence of pulmonary tuberculosis based on the GTWR model in China, 2004-2021.","authors":"Hairu Yu, Jiao Yang, Yexin Yan, Hui Zhang, Qiuyuan Chen, Liang Sun","doi":"10.1017/S0950268824000335","DOIUrl":null,"url":null,"abstract":"<p><p>Contra-posing panel data on the incidence of pulmonary tuberculosis (PTB) at the provincial level in China through the years of 2004-2021 and introducing a geographically and temporally weighted regression (GTWR) model were used to explore the effect of various factors on the incidence of PTB from the perspective of spatial heterogeneity. The principal component analysis (PCA) was used to extract the main information from twenty-two indexes under six macro-factors. The main influencing factors were determined by the Spearman correlation and multi-collinearity tests. After fitting different models, the GTWR model was used to analyse and obtain the distribution changes of regression coefficients. Six macro-factors and incidence of PTB were both correlated, and there was no collinearity between the variables. The fitting effect of the GTWR model was better than ordinary least-squares (OLS) and geographically weighted regression (GWR) models. The incidence of PTB in China was mainly affected by six macro-factors, namely medicine and health, transportation, environment, economy, disease, and educational quality. The influence degree showed an unbalanced trend in the spatial and temporal distribution.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":" ","pages":"e65"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0950268824000335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Contra-posing panel data on the incidence of pulmonary tuberculosis (PTB) at the provincial level in China through the years of 2004-2021 and introducing a geographically and temporally weighted regression (GTWR) model were used to explore the effect of various factors on the incidence of PTB from the perspective of spatial heterogeneity. The principal component analysis (PCA) was used to extract the main information from twenty-two indexes under six macro-factors. The main influencing factors were determined by the Spearman correlation and multi-collinearity tests. After fitting different models, the GTWR model was used to analyse and obtain the distribution changes of regression coefficients. Six macro-factors and incidence of PTB were both correlated, and there was no collinearity between the variables. The fitting effect of the GTWR model was better than ordinary least-squares (OLS) and geographically weighted regression (GWR) models. The incidence of PTB in China was mainly affected by six macro-factors, namely medicine and health, transportation, environment, economy, disease, and educational quality. The influence degree showed an unbalanced trend in the spatial and temporal distribution.
期刊介绍:
Epidemiology & Infection publishes original reports and reviews on all aspects of infection in humans and animals. Particular emphasis is given to the epidemiology, prevention and control of infectious diseases. The scope covers the zoonoses, outbreaks, food hygiene, vaccine studies, statistics and the clinical, social and public-health aspects of infectious disease, as well as some tropical infections. It has become the key international periodical in which to find the latest reports on recently discovered infections and new technology. For those concerned with policy and planning for the control of infections, the papers on mathematical modelling of epidemics caused by historical, current and emergent infections are of particular value.