Monalisa Parija, Surya Prakash, B Madhu Krishna, Sanghamitra Dash, Sandip K Mishra
{"title":"SIRT1 mediates breast cancer development and tumorigenesis controlled by estrogen-related receptor β.","authors":"Monalisa Parija, Surya Prakash, B Madhu Krishna, Sanghamitra Dash, Sandip K Mishra","doi":"10.1007/s12282-024-01555-9","DOIUrl":null,"url":null,"abstract":"<p><p>Silent mating type information regulation 2 homolog 1 (SIRT1) is a class III histone deacetylase (HDAC) that is NAD + dependent and essential for metabolism, senescence, and cell survival. SIRT1 is overexpressed in several cancers, including breast cancer. SIRT1 is a well-known target gene of the estrogen receptor alpha (ER alpha) and is closely related to ER alpha deacetylation. Transcription factor Estrogen-related receptors (ERRs) share sequence homology with ERs in the DNA-binding domain, therefore, the possibility of sharing target genes between them is high. Our current research aims to gain insight into the function of ERRβ in regulating the activity of SIRT1 during the progression of breast cancer. ER-positive (ER + ve) breast cancer cells and tissues had considerably enhanced SIRT1 expression. Six potential ERRE sites were identified by analysis of the 5' upstream region of SIRT1, and both in vitro and in vivo experiments supported their presence. We found SIRT1 to be up-regulated in ERRβ overexpressed ER + ve breast cancer cells. Furthermore, our findings suggested that ectopic production of ERR and PCAF would increase SIRT1 activity. Our findings also indicated that ectopic production of ERRβ and PCAF increased SIRT1 activity. With sufficient evidence demonstrating the substantial involvement of SIRT1 in cell proliferation, migration, and colony formation capability, we were also able to illustrate the tumorigenic role of SIRT1. Overall, our findings highlight SIRT1's tumorigenic influence on breast cancer and suggest that SIRT1 inhibitors might serve as potential therapeutic drugs for the treatment of breast cancer.</p>","PeriodicalId":56083,"journal":{"name":"Breast Cancer","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12282-024-01555-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silent mating type information regulation 2 homolog 1 (SIRT1) is a class III histone deacetylase (HDAC) that is NAD + dependent and essential for metabolism, senescence, and cell survival. SIRT1 is overexpressed in several cancers, including breast cancer. SIRT1 is a well-known target gene of the estrogen receptor alpha (ER alpha) and is closely related to ER alpha deacetylation. Transcription factor Estrogen-related receptors (ERRs) share sequence homology with ERs in the DNA-binding domain, therefore, the possibility of sharing target genes between them is high. Our current research aims to gain insight into the function of ERRβ in regulating the activity of SIRT1 during the progression of breast cancer. ER-positive (ER + ve) breast cancer cells and tissues had considerably enhanced SIRT1 expression. Six potential ERRE sites were identified by analysis of the 5' upstream region of SIRT1, and both in vitro and in vivo experiments supported their presence. We found SIRT1 to be up-regulated in ERRβ overexpressed ER + ve breast cancer cells. Furthermore, our findings suggested that ectopic production of ERR and PCAF would increase SIRT1 activity. Our findings also indicated that ectopic production of ERRβ and PCAF increased SIRT1 activity. With sufficient evidence demonstrating the substantial involvement of SIRT1 in cell proliferation, migration, and colony formation capability, we were also able to illustrate the tumorigenic role of SIRT1. Overall, our findings highlight SIRT1's tumorigenic influence on breast cancer and suggest that SIRT1 inhibitors might serve as potential therapeutic drugs for the treatment of breast cancer.
期刊介绍:
Breast Cancer, the official journal of the Japanese Breast Cancer Society, publishes articles that contribute to progress in the field, in basic or translational research and also in clinical research, seeking to develop a new focus and new perspectives for all who are concerned with breast cancer. The journal welcomes all original articles describing clinical and epidemiological studies and laboratory investigations regarding breast cancer and related diseases. The journal will consider five types of articles: editorials, review articles, original articles, case reports, and rapid communications. Although editorials and review articles will principally be solicited by the editors, they can also be submitted for peer review, as in the case of original articles. The journal provides the best of up-to-date information on breast cancer, presenting readers with high-impact, original work focusing on pivotal issues.