Thomas Rimbot , Olivier Witasse , Marco Pinto , Elise Wright Knutsen , Beatriz Sánchez-Cano , Simon Wood , Elena Tremolizzo , Willi Exner
{"title":"Galactic cosmic rays at 0.7 A.U. with Venus Express housekeeping data","authors":"Thomas Rimbot , Olivier Witasse , Marco Pinto , Elise Wright Knutsen , Beatriz Sánchez-Cano , Simon Wood , Elena Tremolizzo , Willi Exner","doi":"10.1016/j.pss.2024.105867","DOIUrl":null,"url":null,"abstract":"<div><p>We apply a previously developed procedure to characterize galactic cosmic rays (GCRs) at 0.7 A.U. with engineering data coming from the Venus Express mission. The engineering parameters are the Error Detection and Correction EDAC cumulative counters, used for detection and correction of memory errors induced by highly energetic particles. It has already been demonstrated that the slope of this counter measures GCR fluxes using data from Mars Express (1.5 A.U.) and Rosetta (up to 4 A.U.) data. Here, we reproduce these methods using Venus Express EDAC data in order to understand the behavior of GCRs closer to the Sun. We again witness the anti-correlation of EDAC slope with the solar activity and further investigate this procedure. The resulting time-lag between maximum sunspot number and minimum GCRs intensity at Venus is close to one day instead of the expected several months. This work represents one of the first characterization of galactic cosmic rays at small distances to the Sun over a long period of time and further cements the value of using EDAC counters as scientific information.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105867"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003206332400031X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We apply a previously developed procedure to characterize galactic cosmic rays (GCRs) at 0.7 A.U. with engineering data coming from the Venus Express mission. The engineering parameters are the Error Detection and Correction EDAC cumulative counters, used for detection and correction of memory errors induced by highly energetic particles. It has already been demonstrated that the slope of this counter measures GCR fluxes using data from Mars Express (1.5 A.U.) and Rosetta (up to 4 A.U.) data. Here, we reproduce these methods using Venus Express EDAC data in order to understand the behavior of GCRs closer to the Sun. We again witness the anti-correlation of EDAC slope with the solar activity and further investigate this procedure. The resulting time-lag between maximum sunspot number and minimum GCRs intensity at Venus is close to one day instead of the expected several months. This work represents one of the first characterization of galactic cosmic rays at small distances to the Sun over a long period of time and further cements the value of using EDAC counters as scientific information.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research