首页 > 最新文献

Planetary and Space Science最新文献

英文 中文
An estimate of resident time of the Oort Cloud new comets in planetary region 奥尔特云新彗星在行星区驻留时间的估算
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-15 DOI: 10.1016/j.pss.2024.105984
Takashi Ito , Arika Higuchi
We describe the result of our numerical orbit simulation which traces dynamical evolution of new comets coming from the Oort Cloud. We combine two dynamical models for this purpose. The first one is semi-analytic, and it models an evolving comet cloud under galactic tide and encounters with nearby stars. The second one numerically deals with planetary perturbation in the planetary region. Although our study does not include physical effects such as fading or disintegration of comets, we found that typical dynamical resident time of the comets in the planetary region is about 108 years. We also found that the so-called planet barrier works when the initial orbital inclination of the comets is small. A numerical result concerning the temporary transition of the comets into other small body populations such as transneptunian objects or Centaurs is discussed.
我们描述了数值轨道模拟的结果,该模拟追踪了来自奥尔特云的新彗星的动态演变。为此,我们结合了两个动力学模型。第一个模型是半解析模型,它模拟了在银河系潮汐作用下不断演变的彗星云,以及与附近恒星的相遇。第二个模型以数值方式处理行星区域的行星扰动。虽然我们的研究并不包括彗星消逝或解体等物理效应,但我们发现彗星在行星区域的典型动态驻留时间约为 108 年。我们还发现,当彗星的初始轨道倾角较小时,所谓的行星屏障就会起作用。我们还讨论了关于彗星暂时过渡到其他小天体群(如超海王星天体或半人马座)的数值结果。
{"title":"An estimate of resident time of the Oort Cloud new comets in planetary region","authors":"Takashi Ito ,&nbsp;Arika Higuchi","doi":"10.1016/j.pss.2024.105984","DOIUrl":"10.1016/j.pss.2024.105984","url":null,"abstract":"<div><div>We describe the result of our numerical orbit simulation which traces dynamical evolution of new comets coming from the Oort Cloud. We combine two dynamical models for this purpose. The first one is semi-analytic, and it models an evolving comet cloud under galactic tide and encounters with nearby stars. The second one numerically deals with planetary perturbation in the planetary region. Although our study does not include physical effects such as fading or disintegration of comets, we found that typical dynamical resident time of the comets in the planetary region is about <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> years. We also found that the so-called planet barrier works when the initial orbital inclination of the comets is small. A numerical result concerning the temporary transition of the comets into other small body populations such as transneptunian objects or Centaurs is discussed.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105984"},"PeriodicalIF":1.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ExoMars 2028 WISDOM antenna assembly: Description and characterization ExoMars 2028 WISDOM 天线组件:描述和特性
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-15 DOI: 10.1016/j.pss.2024.105995
Wolf-Stefan Benedix , Sebastian Hegler , Christoph Statz , Ronny Hahnel , Dirk Plettemeier , Valérie Ciarletti
While ground penetrating radars have been extensively researched on Earth, the high-resolution exploration and imaging of the shallow subsurface of celestial bodies in our solar system is still in its early stages, with only a handful of systems capable of the task.
Designing high-resolution radar systems can be a complex task due to the large frequency bandwidth required by the antennas to achieve high vertical resolution. The WISDOM GPR, as part of the 2028 ExoMars mission, is a highly capable and challenging instrument in this context, given its fully-polarimetric setup and mission constraints on the operating environment, robustness, as well as mass and size budget.
This paper outlines the development and characterization process of the WISDOM antenna assembly, which can serve as a model for future radar systems. Furthermore, it presents the results of the antenna characterization as the foundation for instrument calibration and optimal radar sounding outcomes.
虽然地面穿透雷达在地球上已得到广泛研究,但对太阳系天体浅层次表面的高分辨率探测和成像仍处于早期阶段,只有少数几个系统能够胜任这一任务。由于天线需要较大的频率带宽才能实现较高的垂直分辨率,因此设计高分辨率雷达系统是一项复杂的任务。WISDOM GPR是2028年ExoMars任务的一部分,鉴于其全偏振设置和任务对运行环境、鲁棒性以及质量和尺寸预算的限制,它在这方面是一个极具能力和挑战性的仪器。本文概述了WISDOM天线组件的开发和表征过程,它可以作为未来雷达系统的模型。此外,本文还介绍了作为仪器校准和最佳雷达探测结果基础的天线鉴定结果。
{"title":"The ExoMars 2028 WISDOM antenna assembly: Description and characterization","authors":"Wolf-Stefan Benedix ,&nbsp;Sebastian Hegler ,&nbsp;Christoph Statz ,&nbsp;Ronny Hahnel ,&nbsp;Dirk Plettemeier ,&nbsp;Valérie Ciarletti","doi":"10.1016/j.pss.2024.105995","DOIUrl":"10.1016/j.pss.2024.105995","url":null,"abstract":"<div><div>While ground penetrating radars have been extensively researched on Earth, the high-resolution exploration and imaging of the shallow subsurface of celestial bodies in our solar system is still in its early stages, with only a handful of systems capable of the task.</div><div>Designing high-resolution radar systems can be a complex task due to the large frequency bandwidth required by the antennas to achieve high vertical resolution. The WISDOM GPR, as part of the 2028 ExoMars mission, is a highly capable and challenging instrument in this context, given its fully-polarimetric setup and mission constraints on the operating environment, robustness, as well as mass and size budget.</div><div>This paper outlines the development and characterization process of the WISDOM antenna assembly, which can serve as a model for future radar systems. Furthermore, it presents the results of the antenna characterization as the foundation for instrument calibration and optimal radar sounding outcomes.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105995"},"PeriodicalIF":1.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photogeological analysis of ShadowCam images of the permanently shadowed floor of lunar crater Shoemaker 对 Shoemaker 月球坑永久阴影地面 ShadowCam 图像的摄影地质学分析
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-10 DOI: 10.1016/j.pss.2024.105998
А.T. Basilevsky , S.S. Krasilnikov , Yuan Li
The photogeologic analysis of the ShadowCam images of the permanently shadowed floor and lower parts of inner slopes of the near-polar lunar crater Shoemaker confirmed the conclusion of Basilevsky and Li (2024)that the surface morphology of the Shoemaker floor is dominated by a population of small (D < 1 km) craters. Future studies hopefully will allow to describe the morphology and morphometry (especially d/D) of the decameter-scale craters seen in the ShadowCam images. The surface of the lower parts of inners slopes of crater Shoemaker, which are permanently shadowed, has the “elephant hide” texture, that is also typical for normally illuminated slopes. So, most issues of the surface morphology were found to be identical or very close to those in normally illuminated regions of the Moon. The new finding in permanently shadowed areas is the presence of lobate-rimmed craters, whose morphology is probably indicative of water ice in the target material.
对 Shoemaker 近极地月球陨石坑永久阴影底面和内坡下部的 ShadowCam 图像进行的光地质学分析证实了 Basilevsky 和 Li(2024 年)的结论,即 Shoemaker 底面的表面形态以小型(D < 1 公里)陨石坑群为主。希望未来的研究能够描述 ShadowCam 图像中看到的十米级陨石坑的形态和形态测量(尤其是 d/D)。肖梅克环形山内侧斜坡下部的表面长期处于阴影中,具有 "象皮 "纹理,这也是正常照明斜坡的典型纹理。因此,大多数表面形态问题都与月球正常照明区域的表面形态相同或非常接近。在永久阴影区的新发现是存在叶状边缘环形山,其形态可能表明目标物质中含有水冰。
{"title":"Photogeological analysis of ShadowCam images of the permanently shadowed floor of lunar crater Shoemaker","authors":"А.T. Basilevsky ,&nbsp;S.S. Krasilnikov ,&nbsp;Yuan Li","doi":"10.1016/j.pss.2024.105998","DOIUrl":"10.1016/j.pss.2024.105998","url":null,"abstract":"<div><div>The photogeologic analysis of the ShadowCam images of the permanently shadowed floor and lower parts of inner slopes of the near-polar lunar crater Shoemaker confirmed the conclusion of Basilevsky and Li (2024)that the surface morphology of the Shoemaker floor is dominated by a population of small (D &lt; 1 km) craters. Future studies hopefully will allow to describe the morphology and morphometry (especially d/D) of the decameter-scale craters seen in the ShadowCam images. The surface of the lower parts of inners slopes of crater Shoemaker, which are permanently shadowed, has the “elephant hide” texture, that is also typical for normally illuminated slopes. So, most issues of the surface morphology were found to be identical or very close to those in normally illuminated regions of the Moon. The new finding in permanently shadowed areas is the presence of lobate-rimmed craters, whose morphology is probably indicative of water ice in the target material.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"254 ","pages":"Article 105998"},"PeriodicalIF":1.8,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of pansharpening for planetary exploration: A case study on the implementation of TGO CaSSIS with MRO HiRISE 行星探测平刨的性能评估:利用 MRO HiRISE 实施 TGO CaSSIS 的案例研究
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-09 DOI: 10.1016/j.pss.2024.105997
A. Tullo , C. Re , G. Cremonese , E. Martellato , R. La Grassa , N. Thomas
The present study analyses the potential of pansharpening algorithms for planetary exploration studies, testing their performance with the 4-band images from the Colour and Stereo Surface Imaging System (CaSSIS) aboard the Exomars 2016 Trace Grace Orbiter (TGO) using HiRISE images from the Mars Reconnaissance Orbiter (MRO) mission as the base. Due to the lack of suitable open-source tools, a suite of scripts was developed to improve alignment between images and enable different component substitution (CS) pansharpening algorithms. The tools developed were tested on a database of images encompassing several regions of Mars to explore its vast diversity in colours, tones, and textures. Then, the resulting images were investigated using spectral and structural performance indices, comparing the results with the source images and the colour information from the HiRISE central channels.
The results show that a substantial number of the tested algorithms are more than suitable for data enhancement, showing a considerable improvement in the structural characteristics of the images without sacrificing their spectral characteristics. In detail, the Gram-Schmidt method, widely used in terrestrial pansharpening, turns out to be the best compromise among the tested algorithms. Regarding the other tested algorithms, GIHS and the MMSE Brovey, a modified version of the classic Brovey, show the most significant increase in structural properties, while GHPF and GHPM show the interesting ability to maintain virtually unchanged spectral conditions of the multispectral source data.
In addition, the analysis reveals the applicability of pansharpening at a ground resolution increment up to 18 times, from 4.5 up to 0.25 m/px, a broader range than is usually used in traditional pansharpening.
本研究以火星勘测轨道飞行器(MRO)任务的 HiRISE 图像为基础,利用 Exomars 2016 Trace Grace Orbiter(TGO)上的彩色和立体表面成像系统(CaSSIS)的 4 波段图像测试了平锐化算法的性能,分析了平锐化算法在行星探索研究中的潜力。由于缺乏合适的开源工具,我们开发了一套脚本来改进图像之间的对齐,并启用不同的组件替换(CS)平锐化算法。开发的工具在一个包含火星多个区域的图像数据库中进行了测试,以探索火星在色彩、色调和纹理方面的巨大多样性。结果表明,相当多的测试算法都非常适合用于数据增强,在不牺牲光谱特性的情况下大大改善了图像的结构特性。具体来说,在陆地平锐化中广泛使用的格拉姆-施密特方法是测试算法中的最佳折中方案。关于其他测试算法,GIHS 和 MMSE Brovey(经典 Brovey 算法的改进版)在结构特性方面的提升最为显著,而 GHPF 和 GHPM 则在保持多光谱源数据的光谱条件几乎不变方面表现出了令人感兴趣的能力。此外,分析还揭示了在地面分辨率增量高达 18 倍(从 4.5 米/px 到 0.25 米/px)的情况下进行平差处理的适用性,这一范围比传统平差处理通常使用的范围更广。
{"title":"Performance evaluation of pansharpening for planetary exploration: A case study on the implementation of TGO CaSSIS with MRO HiRISE","authors":"A. Tullo ,&nbsp;C. Re ,&nbsp;G. Cremonese ,&nbsp;E. Martellato ,&nbsp;R. La Grassa ,&nbsp;N. Thomas","doi":"10.1016/j.pss.2024.105997","DOIUrl":"10.1016/j.pss.2024.105997","url":null,"abstract":"<div><div>The present study analyses the potential of pansharpening algorithms for planetary exploration studies, testing their performance with the 4-band images from the Colour and Stereo Surface Imaging System (CaSSIS) aboard the Exomars 2016 Trace Grace Orbiter (TGO) using HiRISE images from the Mars Reconnaissance Orbiter (MRO) mission as the base. Due to the lack of suitable open-source tools, a suite of scripts was developed to improve alignment between images and enable different component substitution (CS) pansharpening algorithms. The tools developed were tested on a database of images encompassing several regions of Mars to explore its vast diversity in colours, tones, and textures. Then, the resulting images were investigated using spectral and structural performance indices, comparing the results with the source images and the colour information from the HiRISE central channels.</div><div>The results show that a substantial number of the tested algorithms are more than suitable for data enhancement, showing a considerable improvement in the structural characteristics of the images without sacrificing their spectral characteristics. In detail, the Gram-Schmidt method, widely used in terrestrial pansharpening, turns out to be the best compromise among the tested algorithms. Regarding the other tested algorithms, GIHS and the MMSE Brovey, a modified version of the classic Brovey, show the most significant increase in structural properties, while GHPF and GHPM show the interesting ability to maintain virtually unchanged spectral conditions of the multispectral source data.</div><div>In addition, the analysis reveals the applicability of pansharpening at a ground resolution increment up to 18 times, from 4.5 up to 0.25 m/px, a broader range than is usually used in traditional pansharpening.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"254 ","pages":"Article 105997"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of halotrichite in the South Kerala Sedimentary Basin, SW India: Implications for Martian paleo-environmental studies 印度西南部南喀拉拉沉积盆地光卤石的形成:对火星古环境研究的影响
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-09 DOI: 10.1016/j.pss.2024.105999
Kannan J. Prakash , Libiya M. Varghese , P.B. Hiral , Suresh Evna , V.R. Rani , K.S. Sajinkumar , V.J. Rajesh , G.K. Indu , Sneha Mukherjee , J.K. Tomson
Halotrichite [FeAl2(SO4)4·22(H2O)] is a rare secondary sulfate mineral with its occurrence confined within the sulfide weathering zones. In the South Kerala Sedimentary Basin (SKSB) of SW India, halotrichite, here reported for the first time, is associated with an organic matter (OM)-rich carbonaceous clay layer. Field investigation revealed the prevalence of acid rock drainage (ARD) conditions similar to Martian analogue sites like Rio Tinto. The OM-layer is associated with pyrite forming substratum and Al-rich leachate associated with the Youngest Toba Tuff (YTT) cryptotephra layer. Oxidation of these units results in the formation of halotrichite, which is temporally restricted only to the dry season when the water table lowers and the OM-layer is exposed to air. X-Ray Diffraction (XRD) results for halotrichite show the presence of Al and Fe(II) sulfates. Energy Dispersive X-ray Spectroscopy (EDS) ruled out the existence of pickeringite, the Mg end-member of halotrichite-pickeringite series. XRD results for the OM-layer indicate the presence of kaolinite, quartz, goethite, and lepidocrocite. Hyperspectral analysis of the clay samples confirms that halotrichite is associated with goethite, lepidocrocite, kaolinite, and smectite. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the major constituent of the clay sample as kaolinite with traces of quartz, smectite, and OM. Raman spectrum of halotrichite shows the symmetric stretching vibration of SO42− bonded to Fe2+. Association of halotrichite with Fe, Al, and S-rich minerals is also inferred by the study of Raman spectrum of the host clay. Co-existence of halotrichite, goethite, lepidocrocite, and phyllosilicates in the study area is similar to the mineral assemblage found along the Rio Tinto River. On Mars, halotrichite is associated with the layered sulfate deposits, such as those in Valles Marineris and Meridiani Planum, and is categorized as a polyhydrated sulfate. Hence, this study on the halotrichite mineralization in the SKSB can supplement the attempts on deciphering the deposition and formation environment of similar mineralization on Mars.
光卤石[FeAl2(SO4)4-22(H2O)]是一种罕见的次生硫酸盐矿物,只出现在硫化物风化带中。在印度西南部的南喀拉拉邦沉积盆地(SKSB),光卤石首次与富含有机质(OM)的碳质粘土层伴生。实地调查显示,酸性岩石排水(ARD)条件与力拓等火星类似地点相似。OM 层与黄铁矿形成的基底层以及与最年轻的多巴凝灰岩(YTT)隐晶质层相关的富铝浸出液有关。这些单元的氧化作用会形成卤黄铁矿,而卤黄铁矿在时间上仅限于旱季,因为旱季时地下水位降低,OM 层暴露在空气中。光卤石的 X 射线衍射(XRD)结果显示存在铝和硫酸铁(II)。能量色散 X 射线光谱(EDS)排除了光卤石-黝帘石系列的镁末端成员黝帘石的存在。OM 层的 XRD 结果表明存在高岭石、石英、网纹石和鳞片石。粘土样品的高光谱分析证实,光卤石与网纹石、鳞片石、高岭石和直闪石相关联。傅立叶变换红外光谱(FTIR)分析表明,粘土样品的主要成分是高岭石,还有微量的石英、直闪石和 OM。光卤石的拉曼光谱显示了与 Fe2+ 结合的 SO42- 的对称伸缩振动。通过对主粘土拉曼光谱的研究,还可以推断出光卤石与富含铁、铝和 S 的矿物的关联。在研究区域,光卤石、网纹石、鳞片石和植硅酸盐共存,这与在力拓河沿岸发现的矿物组合相似。在火星上,光卤石与层状硫酸盐矿床有关,如海洋谷(Valles Marineris)和子午线(Meridiani Planum)的硫酸盐矿床,被归类为多水合硫酸盐。因此,对 SKSB 中光卤石成矿作用的研究可以补充对火星上类似成矿作用的沉积和形成环境的解密尝试。
{"title":"Formation of halotrichite in the South Kerala Sedimentary Basin, SW India: Implications for Martian paleo-environmental studies","authors":"Kannan J. Prakash ,&nbsp;Libiya M. Varghese ,&nbsp;P.B. Hiral ,&nbsp;Suresh Evna ,&nbsp;V.R. Rani ,&nbsp;K.S. Sajinkumar ,&nbsp;V.J. Rajesh ,&nbsp;G.K. Indu ,&nbsp;Sneha Mukherjee ,&nbsp;J.K. Tomson","doi":"10.1016/j.pss.2024.105999","DOIUrl":"10.1016/j.pss.2024.105999","url":null,"abstract":"<div><div>Halotrichite [FeAl<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>·22(H<sub>2</sub>O)] is a rare secondary sulfate mineral with its occurrence confined within the sulfide weathering zones. In the South Kerala Sedimentary Basin (SKSB) of SW India, halotrichite, here reported for the first time, is associated with an organic matter (OM)-rich carbonaceous clay layer. Field investigation revealed the prevalence of acid rock drainage (ARD) conditions similar to Martian analogue sites like Rio Tinto. The OM-layer is associated with pyrite forming substratum and Al-rich leachate associated with the Youngest Toba Tuff (YTT) cryptotephra layer. Oxidation of these units results in the formation of halotrichite, which is temporally restricted only to the dry season when the water table lowers and the OM-layer is exposed to air. X-Ray Diffraction (XRD) results for halotrichite show the presence of Al and Fe(II) sulfates. Energy Dispersive X-ray Spectroscopy (EDS) ruled out the existence of pickeringite, the Mg end-member of halotrichite-pickeringite series. XRD results for the OM-layer indicate the presence of kaolinite, quartz, goethite, and lepidocrocite. Hyperspectral analysis of the clay samples confirms that halotrichite is associated with goethite, lepidocrocite, kaolinite, and smectite. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the major constituent of the clay sample as kaolinite with traces of quartz, smectite, and OM. Raman spectrum of halotrichite shows the symmetric stretching vibration of SO<sub>4</sub><sup>2−</sup> bonded to Fe<sup>2+</sup>. Association of halotrichite with Fe, Al, and S-rich minerals is also inferred by the study of Raman spectrum of the host clay. Co-existence of halotrichite, goethite, lepidocrocite, and phyllosilicates in the study area is similar to the mineral assemblage found along the Rio Tinto River. On Mars, halotrichite is associated with the layered sulfate deposits, such as those in Valles Marineris and Meridiani Planum, and is categorized as a polyhydrated sulfate. Hence, this study on the halotrichite mineralization in the SKSB can supplement the attempts on deciphering the deposition and formation environment of similar mineralization on Mars.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"254 ","pages":"Article 105999"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power attenuation of Martian rovers and landers solar panels due to dust deposition 火星车和着陆器太阳能电池板因灰尘沉积而导致功率衰减
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-22 DOI: 10.1016/j.pss.2024.105985
Thomas Pierron, François Forget, Ehouarn Millour, Antoine Bierjon
Because of the high amount of dust in the Martian atmosphere, solar panels of landers and rovers on Mars get covered by dust in the course of their mission. This accumulation significantly decreases the available power over sols. During some missions, winds were able to blow the dust away. These ”dust cleaning events”, as they are called, were followed by an increase of the electrical current produced by the solar arrays. However, the Insight Lander solar panels were never cleaned and the mission died of dust accumulation. In order to better predict the evolution of available power produced by solar panels in the Martian conditions, this paper proposes a model of dust accumulation in which the solar flux under the accumulated dust layer is computed taking into account a full radiative transfer in the atmosphere and in the dust layer accumulated on the panel. This work uses several missions observation data to validate this model.
由于火星大气中含有大量灰尘,火星上的着陆器和漫游车的太阳能电池板在执行任务的过程中会被灰尘覆盖。这些灰尘的积累大大降低了太阳能电池板的可用功率。在某些任务中,风能够将灰尘吹走。这些所谓的 "灰尘清理事件 "之后,太阳能电池阵列产生的电流会增加。然而,"洞察号 "着陆器的太阳能电池板从未清洗过,这次任务也因灰尘堆积而失败。为了更好地预测太阳能电池板在火星条件下产生的可用功率的变化,本文提出了一个灰尘积聚模型,在该模型中,计算了积聚灰尘层下的太阳通量,并考虑了大气层和电池板上积聚的灰尘层中的完全辐射传递。这项工作利用几个任务的观测数据来验证这一模型。
{"title":"Power attenuation of Martian rovers and landers solar panels due to dust deposition","authors":"Thomas Pierron,&nbsp;François Forget,&nbsp;Ehouarn Millour,&nbsp;Antoine Bierjon","doi":"10.1016/j.pss.2024.105985","DOIUrl":"10.1016/j.pss.2024.105985","url":null,"abstract":"<div><div>Because of the high amount of dust in the Martian atmosphere, solar panels of landers and rovers on Mars get covered by dust in the course of their mission. This accumulation significantly decreases the available power over sols. During some missions, winds were able to blow the dust away. These ”dust cleaning events”, as they are called, were followed by an increase of the electrical current produced by the solar arrays. However, the Insight Lander solar panels were never cleaned and the mission died of dust accumulation. In order to better predict the evolution of available power produced by solar panels in the Martian conditions, this paper proposes a model of dust accumulation in which the solar flux under the accumulated dust layer is computed taking into account a full radiative transfer in the atmosphere and in the dust layer accumulated on the panel. This work uses several missions observation data to validate this model.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105985"},"PeriodicalIF":1.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The thermal impact of the self-heating effect on airless bodies. The case of Mercury’s north polar craters 自热效应对无空气天体的热影响。水星北极陨石坑的情况
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-11 DOI: 10.1016/j.pss.2024.105983
Pamela Cambianica , Emanuele Simioni , Gabriele Cremonese , Silvia Bertoli , Elena Martellato , Alice Lucchetti , Maurizio Pajola , Cristina Re , Adriano Tullo , Matteo Massironi
Thermal models are essential for studying airless planetary surfaces, as the interaction between topography and thermophysical properties plays a crucial role in determining a surface’s response to localized illumination. Accurate temperature distribution calculations require a comprehensive investigation of sunlight scattering, a process that, despite its computational challenges, cannot be overlooked, especially when high resolution is necessary. Furthermore, thermal analysis is fundamental for assessing the stability of volatiles in polar regions. In this study, we introduce a novel approach by discretizing the Sun into 100 individual elements, allowing for a highly precise simulation of solar flux—an innovation crucial for accurately capturing temperature distributions in Mercury’s polar craters, given the planet’s proximity to the Sun. This level of discretization significantly enhances the accuracy of the thermal model, ensuring a more realistic depiction of how sunlight interacts with crater topography. We developed a dual-model approach that simulates both direct solar illumination and its scattering on two craters, Laxness and Fuller, located at Mercury’s north pole. The illumination and thermal model predict temperature distribution and heat transfer based on the material’s thermal properties and topography. The study examines the interaction between direct sunlight, causing localized heating, and scattered light, which influences the thermal response of surface materials. Detailed illumination maps and temperature profiles were generated over two Hermean years, revealing the significant impact of the self-heating effect on temperature distribution. The results show that specific regions experience indirect solar flux due to the craters’ morphology, particularly in permanently shadowed regions (PSRs) that are heated exclusively by scattered radiation. Maximum temperature profiles for the Laxness and Fuller craters show a substantial temperature increase within PSRs compared to areas exposed to direct illumination. However, while self-heating does not affect the stability of water ice in the Laxness crater, in the Fuller crater, a section within the radar-bright material reaches temperatures of up to 210 K, potentially threatening the stability of water ice. Further investigation with the onboard SIMBIO-SYS instrument on the BepiColombo mission will help to better understand the current state of these craters and their volatile deposits.
热模型对于研究无空气行星表面至关重要,因为地形和热物理性质之间的相互作用在决定表面对局部光照的响应方面起着至关重要的作用。精确的温度分布计算需要对太阳光散射进行全面研究,尽管这一过程在计算上具有挑战性,但不容忽视,尤其是在需要高分辨率的情况下。此外,热分析也是评估极地地区挥发物稳定性的基础。在这项研究中,我们引入了一种新方法,将太阳离散为 100 个单独的元素,从而能够高度精确地模拟太阳通量--鉴于水星靠近太阳,这种创新对于准确捕捉水星极地环形山的温度分布至关重要。这种离散化程度大大提高了热模型的准确性,确保更真实地描述阳光与陨石坑地形的相互作用。我们开发了一种双模型方法,模拟太阳直射及其对位于水星北极的拉克斯内斯和富勒这两个陨石坑的散射。照明和热模型根据材料的热特性和地形预测温度分布和热传导。这项研究考察了造成局部加热的直射阳光与影响表面材料热反应的散射光之间的相互作用。研究人员绘制了两个赫曼年的详细光照图和温度分布图,揭示了自加热效应对温度分布的重要影响。结果表明,由于陨石坑的形态,特定区域会受到间接太阳光通量的影响,特别是在完全由散射辐射加热的永久阴影区(PSRs)。拉克斯内斯陨石坑和富勒陨石坑的最高温度曲线显示,与受到直接照射的区域相比,PSRs 内的温度大幅上升。然而,虽然自热并不影响拉克斯内斯陨石坑中水冰的稳定性,但在富勒陨石坑中,雷达照射物质内的一段温度高达 210 K,有可能威胁到水冰的稳定性。利用贝皮科伦坡飞行任务上的星载 SIMBIO-SYS 仪器进行进一步调查,将有助于更好地了解这些陨石坑及其挥发性沉积物的现状。
{"title":"The thermal impact of the self-heating effect on airless bodies. The case of Mercury’s north polar craters","authors":"Pamela Cambianica ,&nbsp;Emanuele Simioni ,&nbsp;Gabriele Cremonese ,&nbsp;Silvia Bertoli ,&nbsp;Elena Martellato ,&nbsp;Alice Lucchetti ,&nbsp;Maurizio Pajola ,&nbsp;Cristina Re ,&nbsp;Adriano Tullo ,&nbsp;Matteo Massironi","doi":"10.1016/j.pss.2024.105983","DOIUrl":"10.1016/j.pss.2024.105983","url":null,"abstract":"<div><div>Thermal models are essential for studying airless planetary surfaces, as the interaction between topography and thermophysical properties plays a crucial role in determining a surface’s response to localized illumination. Accurate temperature distribution calculations require a comprehensive investigation of sunlight scattering, a process that, despite its computational challenges, cannot be overlooked, especially when high resolution is necessary. Furthermore, thermal analysis is fundamental for assessing the stability of volatiles in polar regions. In this study, we introduce a novel approach by discretizing the Sun into 100 individual elements, allowing for a highly precise simulation of solar flux—an innovation crucial for accurately capturing temperature distributions in Mercury’s polar craters, given the planet’s proximity to the Sun. This level of discretization significantly enhances the accuracy of the thermal model, ensuring a more realistic depiction of how sunlight interacts with crater topography. We developed a dual-model approach that simulates both direct solar illumination and its scattering on two craters, Laxness and Fuller, located at Mercury’s north pole. The illumination and thermal model predict temperature distribution and heat transfer based on the material’s thermal properties and topography. The study examines the interaction between direct sunlight, causing localized heating, and scattered light, which influences the thermal response of surface materials. Detailed illumination maps and temperature profiles were generated over two Hermean years, revealing the significant impact of the self-heating effect on temperature distribution. The results show that specific regions experience indirect solar flux due to the craters’ morphology, particularly in permanently shadowed regions (PSRs) that are heated exclusively by scattered radiation. Maximum temperature profiles for the Laxness and Fuller craters show a substantial temperature increase within PSRs compared to areas exposed to direct illumination. However, while self-heating does not affect the stability of water ice in the Laxness crater, in the Fuller crater, a section within the radar-bright material reaches temperatures of up to 210 K, potentially threatening the stability of water ice. Further investigation with the onboard SIMBIO-SYS instrument on the BepiColombo mission will help to better understand the current state of these craters and their volatile deposits.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105983"},"PeriodicalIF":1.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of volatiles evolving from selected highland and mare lunar regolith simulants during vacuum sintering 比较真空烧结过程中从选定的高原和泥质月球碎屑模拟物中挥发出来的挥发物
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-05 DOI: 10.1016/j.pss.2024.105982
Mihail P. Petkov , Ryan P. Wilkerson , Gerald E. Voecks , Douglas L. Rickman , Jennifer E. Edmunson , Michael R. Effinger
Volatiles evolving from JSC-1A, NU-LHT-4M and CSM-LHT-1G lunar regolith simulants during in vacuo thermal processing were analyzed using mass spectrometry as a function of temperature. Two high-fidelity simulants, JSC-1A (mare) and NU-LHT-4M (highland), were compared to a newly developed CSM-LHT-1G highland simulant, modified to closely match lunar geochemistry. Large autogenous gas loads were observed for all investigated materials. Mineralogical knowledge was used to identify and attribute individual volatile species to reacting, transforming, or decomposing constituents (hydrates, carbonates, sulfates, sulfides, clays, etc.) of the respective regolith simulant in the self-generated gas environment. Cumulative mass losses for individual simulant components as a function of temperature were quantified using mass spectrometry in conjunction with thermogravimetric analysis. Investigation of the four components of CSM-LHT-1G – anorthosite, basalt, augite, and glass – aided the attribution of volatile species to specific compounds and their respective sources. The results showed significant decomposition of non-lunar phases present in the man-made regolith simulants below the typical glass crystallization temperatures, which paves the way to devising methods for enhancing the fidelity of the simulants. High gas loads and corrosive gases (HF and HCl) were recognized as potential hazards, pertaining to the development of large testbed facilities.
利用质谱仪分析了 JSC-1A、NU-LHT-4M 和 CSM-LHT-1G 月球碎屑模拟物在真空热处理过程中挥发出来的挥发物与温度的函数关系。将两种高保真模拟物 JSC-1A(裸砂)和 NU-LHT-4M(高原)与新开发的 CSM-LHT-1G 高原模拟物进行了比较,后者经过改良以密切匹配月球地球化学。在所有调查材料中都观察到了大量的自生气体负荷。矿物学知识被用来确定和归因于自生气体环境中相应的碎屑岩模拟物的反应、转化或分解成分(水合物、碳酸盐、硫酸盐、硫化物、粘土等)的个别挥发性物种。利用质谱法和热重分析法对模拟物各成分随温度变化的累积质量损失进行了量化。对 CSM-LHT-1G 的四种成分--正长岩、玄武岩、辉绿岩和玻璃--的研究有助于将挥发性物质归因于特定的化合物及其各自的来源。结果表明,人造雷公石模拟物中的非月相在典型的玻璃结晶温度以下发生了大量分解,这为设计提高模拟物真实性的方法铺平了道路。高气体负荷和腐蚀性气体(HF 和 HCl)被认为是潜在的危险,与大型试验台设施的开发有关。
{"title":"Comparison of volatiles evolving from selected highland and mare lunar regolith simulants during vacuum sintering","authors":"Mihail P. Petkov ,&nbsp;Ryan P. Wilkerson ,&nbsp;Gerald E. Voecks ,&nbsp;Douglas L. Rickman ,&nbsp;Jennifer E. Edmunson ,&nbsp;Michael R. Effinger","doi":"10.1016/j.pss.2024.105982","DOIUrl":"10.1016/j.pss.2024.105982","url":null,"abstract":"<div><div>Volatiles evolving from JSC-1A, NU-LHT-4M and CSM-LHT-1G lunar regolith simulants during <em>in vacuo</em> thermal processing were analyzed using mass spectrometry as a function of temperature. Two high-fidelity simulants, JSC-1A (mare) and NU-LHT-4M (highland), were compared to a newly developed CSM-LHT-1G highland simulant, modified to closely match lunar geochemistry. Large autogenous gas loads were observed for all investigated materials. Mineralogical knowledge was used to identify and attribute individual volatile species to reacting, transforming, or decomposing constituents (hydrates, carbonates, sulfates, sulfides, clays, etc.) of the respective regolith simulant in the self-generated gas environment. Cumulative mass losses for individual simulant components as a function of temperature were quantified using mass spectrometry in conjunction with thermogravimetric analysis. Investigation of the four components of CSM-LHT-1G – anorthosite, basalt, augite, and glass – aided the attribution of volatile species to specific compounds and their respective sources. The results showed significant decomposition of non-lunar phases present in the man-made regolith simulants below the typical glass crystallization temperatures, which paves the way to devising methods for enhancing the fidelity of the simulants. High gas loads and corrosive gases (HF and HCl) were recognized as potential hazards, pertaining to the development of large testbed facilities.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"252 ","pages":"Article 105982"},"PeriodicalIF":1.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JunoPerijove 34: Update Ganymede 3D-control network and new DEMs study JunoPerijove 34:更新 Ganymede 3D 控制网络和新的 DEMs 研究
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-25 DOI: 10.1016/j.pss.2024.105981
I.E. Nadezhdina, A.E. Zubarev, N.A. Kozlova, N.A. Slodarzh, I.P. Karachevtseva
During the Juno Perijove 34 the JunoCam acquired four RGB images of Ganymede. These images and updated SPICE kernel for spacecraft's trajectories were used to refine previous 3D-control point network (CPN). As a result, 4954 control points were measured 22,098 times with a minimum of 2 and a maximum of 16 observations per point, based on the 302 best available images from all missions (Voyagers, Galileo and Juno). After adjustment more than 86% of points have accuracy better than 3 km (>97% - better than 5 km). A new libration value for Ganymede 18ʺ is obtained. This updated CPN was used for compiling a new Ganymede global mosaic to support the planning of observations within the JUICE mission. New detailed local DEMs were obtained by stereovectorization for Enki Catena and Tros crater regions. In the Enki chain, the ratio d/D of the depth of craters to their diameter ranges from 0.049 to 0.089 and correlates with the area types (dark or light).
在 Juno Perijove 34 期间,JunoCam 获得了四幅木卫三的 RGB 图像。这些图像和更新的航天器轨迹 SPICE 内核被用来完善先前的三维控制点网络(CPN)。结果,根据所有飞行任务(旅行者号、伽利略号和朱诺号)提供的 302 幅最佳图像,对 4954 个控制点进行了 22 098 次测量,每个点的观测次数最少为 2 次,最多为 16 次。经过调整后,超过 86% 的点的精确度优于 3 千米(97% 优于 5 千米)。获得了甘尼米18ʺ的新天平校准值。更新后的 CPN 被用于编制新的 Ganymede 全球镶嵌图,以支持 JUICE 任务中的观测规划。通过对 Enki Catena 和 Tros 环形山区域进行立体矢量化,获得了新的详细局部 DEM。在恩基环形山链中,环形山深度与直径之比 d/D 在 0.049 至 0.089 之间,与区域类型(深色或浅色)相关。
{"title":"JunoPerijove 34: Update Ganymede 3D-control network and new DEMs study","authors":"I.E. Nadezhdina,&nbsp;A.E. Zubarev,&nbsp;N.A. Kozlova,&nbsp;N.A. Slodarzh,&nbsp;I.P. Karachevtseva","doi":"10.1016/j.pss.2024.105981","DOIUrl":"10.1016/j.pss.2024.105981","url":null,"abstract":"<div><div>During the Juno Perijove 34 the JunoCam acquired four RGB images of Ganymede. These images and updated SPICE kernel for spacecraft's trajectories were used to refine previous 3D-control point network (CPN). As a result, 4954 control points were measured 22,098 times with a minimum of 2 and a maximum of 16 observations per point, based on the 302 best available images from all missions (Voyagers, Galileo and Juno). After adjustment more than 86% of points have accuracy better than 3 km (&gt;97% - better than 5 km). A new libration value for Ganymede 18ʺ is obtained. This updated CPN was used for compiling a new Ganymede global mosaic to support the planning of observations within the JUICE mission. New detailed local DEMs were obtained by stereovectorization for Enki Catena and Tros crater regions. In the Enki chain, the ratio d/D of the depth of craters to their diameter ranges from 0.049 to 0.089 and correlates with the area types (dark or light).</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"252 ","pages":"Article 105981"},"PeriodicalIF":1.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological, hydrogeochemical and sedimentological analysis of hypersaline Sambhar Lake, India: An analog to understand evaporitic paleolake basins on Mars 印度桑巴尔超高盐湖的形态、水文地球化学和沉积学分析:了解火星上蒸发古湖盆地的类似物
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-18 DOI: 10.1016/j.pss.2024.105974
Deepali Singh , Priyadarshini Singh , Nidhi Roy , Saumitra Mukherjee
In the recent decade of astrobiological exploration of the Martian surface, there has been a shift from identifying habitable environments to finding markers indicative of biological activity. It requires a prior understanding of the physical and geochemical environment of the setting to decipher whether the conditions were conducive. Generally, quiescent surroundings of lacustrine basins are considered one of the best targets for the preservation of any biological signatures. However, due to logistical limitations, the geochemical information available is mostly restricted to small areas on the surficial level (or in the subsurface in case of layered deposits or impact craters) where sufficient satellite coverage is available and, in some areas, where rovers/landers have been deployed. In this context, terrestrial lacustrine basins offer valuable insights into the environment required for the formation of the minerals observed on the Martian surface.
This study was carried out within Sambhar Lake located in the arid/semiarid climatic zone within the Thar desert. It is a hypersaline playa that has undergone several cycles of desiccation and re-filling, sharing its climate-controlled history with that of several paleolakes on Mars. We conducted physicochemical analysis of the samples collected from the lake and its surrounding area and compared our results with samples from the Curiosity rover (at Gale crater) and to those of the studies carried out in basalt-rich parent settings of Iceland. Our results suggest that Sambhar Lake is a Na-Cl type brine with climate-driven hydrology. The shallow cores and rock samples indicated that the area is rich in evaporites. We propose that even the sites with different parent material may be crucial in understanding the geological evolution of paleolakes on Mars and that Sambhar is a great example to study tectono-geomorphic evolution and the climate-induced transition of a lacustrine basin to a playa. Additionally, the lake is also desirable to study extremophiles and their adaptation to changing environmental variables for future planetary missions, including but not limited to, Mars.
在最近十年对火星表面的天体生物学探索中,已经从确定宜居环境转向寻找表明生物活动的标记。这就要求事先了解环境的物理和地球化学环境,以破解条件是否有利。一般来说,湖沼盆地的静态环境被认为是保存任何生物特征的最佳目标之一。然而,由于后勤方面的限制,现有的地球化学信息大多局限于有足够卫星覆盖的表层小区域(或分层沉积或撞击坑的次表层),在某些地区,还部署了漫游车/登陆器。在这种情况下,陆地湖沼盆地为了解火星表面观察到的矿物形成所需的环境提供了宝贵的见解。这项研究是在位于塔尔沙漠干旱/半干旱气候区的桑巴尔湖内进行的。该湖是一个高盐水湖泊,经历了数次干燥和再充水周期,与火星上的几个古湖泊有着相同的气候控制历史。我们对从湖泊及其周边地区采集的样本进行了物理化学分析,并将分析结果与好奇号探测器(在盖尔陨石坑)采集的样本以及在冰岛富含玄武岩的母质环境中采集的样本进行了比较。我们的研究结果表明,桑巴尔湖是一种由气候驱动的 Na-Cl 型卤水。浅层岩心和岩石样本表明,该地区富含蒸发岩。我们认为,即使是母质不同的地点也可能对了解火星上古湖泊的地质演化至关重要,而桑巴尔湖则是研究构造地貌演化以及由气候引起的湖泊盆地向洼地过渡的一个很好的例子。此外,该湖也是研究嗜极生物及其对未来行星任务(包括但不限于火星)不断变化的环境变量的适应性的理想场所。
{"title":"Morphological, hydrogeochemical and sedimentological analysis of hypersaline Sambhar Lake, India: An analog to understand evaporitic paleolake basins on Mars","authors":"Deepali Singh ,&nbsp;Priyadarshini Singh ,&nbsp;Nidhi Roy ,&nbsp;Saumitra Mukherjee","doi":"10.1016/j.pss.2024.105974","DOIUrl":"10.1016/j.pss.2024.105974","url":null,"abstract":"<div><div>In the recent decade of astrobiological exploration of the Martian surface, there has been a shift from identifying habitable environments to finding markers indicative of biological activity. It requires a prior understanding of the physical and geochemical environment of the setting to decipher whether the conditions were conducive. Generally, quiescent surroundings of lacustrine basins are considered one of the best targets for the preservation of any biological signatures. However, due to logistical limitations, the geochemical information available is mostly restricted to small areas on the surficial level (or in the subsurface in case of layered deposits or impact craters) where sufficient satellite coverage is available and, in some areas, where rovers/landers have been deployed. In this context, terrestrial lacustrine basins offer valuable insights into the environment required for the formation of the minerals observed on the Martian surface.</div><div>This study was carried out within Sambhar Lake located in the arid/semiarid climatic zone within the Thar desert. It is a hypersaline playa that has undergone several cycles of desiccation and re-filling, sharing its climate-controlled history with that of several paleolakes on Mars. We conducted physicochemical analysis of the samples collected from the lake and its surrounding area and compared our results with samples from the Curiosity rover (at Gale crater) and to those of the studies carried out in basalt-rich parent settings of Iceland. Our results suggest that Sambhar Lake is a Na-Cl type brine with climate-driven hydrology. The shallow cores and rock samples indicated that the area is rich in evaporites. We propose that even the sites with different parent material may be crucial in understanding the geological evolution of paleolakes on Mars and that Sambhar is a great example to study tectono-geomorphic evolution and the climate-induced transition of a lacustrine basin to a playa. Additionally, the lake is also desirable to study extremophiles and their adaptation to changing environmental variables for future planetary missions, including but not limited to, Mars.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"252 ","pages":"Article 105974"},"PeriodicalIF":1.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Planetary and Space Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1