Effective dyes for DSSCs–Important experimental and calculated parameters

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2024-03-01 DOI:10.1016/j.nexus.2024.100282
Jeanet Conradie
{"title":"Effective dyes for DSSCs–Important experimental and calculated parameters","authors":"Jeanet Conradie","doi":"10.1016/j.nexus.2024.100282","DOIUrl":null,"url":null,"abstract":"<div><p>This review article gives a short overview of the basic principle and criteria to evaluate the performance of dye-sensitized solar cells. Experimental measurements such as the short-circuit current density, open-circuit photovoltage, fill factor, energy conversion efficiency, light harvesting energy and band gap, are discussed and formulas to measure them are provided. In addition, density functional theory calculated parameters often used to evaluate dyes for dye-sensitized solar cells are explained and formulated. These include light harvesting energy, oscillator strength, injection driving force, regeneration driving force, driving force for charge recombination, excited state lifetime, the character (e.g. metal based, ligand based, π, π* etc.) and energy of the highest occupied and lowest unoccupied molecular orbital, natural transition orbitals, band gap and reorganization energy for electron and hole. The relationship between the density functional theory calculated and experimentally measured parameters is explained. An enhanced short-circuit current density and improved performance of dye-sensitized solar cells are anticipated with higher calculated values for light harvesting efficiency, driving force for electron injection and regeneration, and lower calculated values of reorganization energy. Additionally, higher calculated values of the dipole moment of the dye perpendicular to the TiO<sub>2</sub> semiconductor surface are expected to enhance the open-circuit photovoltage, consequently contributing to the overall performance of dye-sensitized solar cells. Figures to illustrate the different measurable parameters and selected examples from the literature are provided. These techniques can be employed in subsequent experimental and theoretical studies to validate potential new dyes for use in dye-sensitized solar cells.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"13 ","pages":"Article 100282"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000135/pdfft?md5=d44995c92934b5f613ac95e14aedc2ea&pid=1-s2.0-S2772427124000135-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This review article gives a short overview of the basic principle and criteria to evaluate the performance of dye-sensitized solar cells. Experimental measurements such as the short-circuit current density, open-circuit photovoltage, fill factor, energy conversion efficiency, light harvesting energy and band gap, are discussed and formulas to measure them are provided. In addition, density functional theory calculated parameters often used to evaluate dyes for dye-sensitized solar cells are explained and formulated. These include light harvesting energy, oscillator strength, injection driving force, regeneration driving force, driving force for charge recombination, excited state lifetime, the character (e.g. metal based, ligand based, π, π* etc.) and energy of the highest occupied and lowest unoccupied molecular orbital, natural transition orbitals, band gap and reorganization energy for electron and hole. The relationship between the density functional theory calculated and experimentally measured parameters is explained. An enhanced short-circuit current density and improved performance of dye-sensitized solar cells are anticipated with higher calculated values for light harvesting efficiency, driving force for electron injection and regeneration, and lower calculated values of reorganization energy. Additionally, higher calculated values of the dipole moment of the dye perpendicular to the TiO2 semiconductor surface are expected to enhance the open-circuit photovoltage, consequently contributing to the overall performance of dye-sensitized solar cells. Figures to illustrate the different measurable parameters and selected examples from the literature are provided. These techniques can be employed in subsequent experimental and theoretical studies to validate potential new dyes for use in dye-sensitized solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 DSSC 的有效染料--重要的实验和计算参数
这篇综述文章简要概述了评价染料敏化太阳能电池性能的基本原理和标准。文章讨论了短路电流密度、开路光电压、填充因子、能量转换效率、光收集能量和带隙等实验测量值,并提供了测量公式。此外,还解释并制定了通常用于评估染料敏化太阳能电池的染料的密度泛函理论计算参数。这些参数包括光收集能、振荡器强度、注入驱动力、再生驱动力、电荷重组驱动力、激发态寿命、最高占有和最低未占有分子轨道的特性(如金属基、配体基、π、π* 等)和能量、自然过渡轨道、带隙以及电子和空穴的重组能。解释了密度泛函理论计算参数与实验测量参数之间的关系。随着光收集效率、电子注入和再生驱动力计算值的提高,以及重组能计算值的降低,预计染料敏化太阳能电池的短路电流密度会提高,性能也会改善。此外,垂直于二氧化钛半导体表面的染料偶极矩计算值越高,预计开路光电压就越高,从而有助于提高染料敏化太阳能电池的整体性能。图中提供了不同的可测量参数和文献中的部分实例。这些技术可用于后续的实验和理论研究,以验证染料敏化太阳能电池中可能使用的新染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Production economics and carbon footprint of an integrated timber harvesting operation in the Northeastern US Optimal rule-based energy management and sizing of a grid-connected renewable energy microgrid with hybrid storage using Levy Flight Algorithm pH shift extraction technique for plant proteins: A promising technique for sustainable development Cost breakdown indicates that biochar production from microalgae in Central Europe requires innovative cultivation procedures “Chacco” clay from the Peruvian highlands as a potential adsorbent of heavy metals in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1