Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Earthquake Science Pub Date : 2024-02-29 DOI:10.1016/j.eqs.2024.01.014
Pei Zhang , Xiaodong Song , Jiangtao Li , Xingchen Wang , Xuezhen Zhang
{"title":"Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints","authors":"Pei Zhang ,&nbsp;Xiaodong Song ,&nbsp;Jiangtao Li ,&nbsp;Xingchen Wang ,&nbsp;Xuezhen Zhang","doi":"10.1016/j.eqs.2024.01.014","DOIUrl":null,"url":null,"abstract":"<div><p>Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the ChinArray II temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the <em>H</em>-<em>κ</em>-c method (Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of <em>v</em><sub>S</sub>, crustal thickness, and <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> structures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios. While, lower velocities and higher <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane (SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust. Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones (LVZs) in the SPGZ. The crustal thickness, <em>v</em><sub>S</sub>, and <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 93-106"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000181/pdfft?md5=d68985c7d9bade2434ea6675dae33b91&pid=1-s2.0-S1674451924000181-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451924000181","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the ChinArray II temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method (Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vS structures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vS ratios. While, lower velocities and higher vP/vS ratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane (SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust. Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones (LVZs) in the SPGZ. The crustal thickness, vS, and vP/vS ratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从面波频散和接收函数联合反演及 P 速度约束看青藏高原东北部的地壳和最上层地幔结构
青藏高原东北部地下岩石圈结构对研究青藏高原地壳增厚和扩张的地球动力学过程具有重要意义。我们利用布设在青藏高原的 ChinArray II 临时站的数据,对接收函数和面波频散与 P 波速度约束进行了联合反演。在联合反演之前,我们对接收函数数据采用了H-κ-c方法(Li JT等,2019),以校正地壳各向异性和倾斜界面引起的Ps相和地壳多相到达时间的后方位角变化。联合反演同时得出了青藏高原的高分辨率vS、地壳厚度和vP/vS结构图像。地震图像显示,地壳厚度从青藏高原向外递减。鄂尔多斯块体和阿拉善块体的稳定内部表现出较高的速度和较低的地壳 vP/vS 比值。而在祁连造山带和松潘-甘孜地块(SPGZ)下,速度较低,vP/vS比值较高,这两个地块地质活跃,机械强度较弱,尤其是在中下地壳。热星体流引发的岩石圈脱层或热侵蚀是在松潘-甘孜地块观测到的最上层地幔低速带的成因。地壳厚度、vS和vP/vS比值表明,整个岩石圈缩短是青藏高原地壳增厚的一个合理机制,支持了该地区岩石圈尺度耦合变形的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
期刊最新文献
Structural similarity of lithospheric velocity models of Chinese mainland Assessing the effects of model parameter assumptions on surface-wave inversion results Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan Mechanisms to explain soil liquefaction triggering, development, and persistence during an earthquake An illustrated guide to: Parsimonious multi-scale full-waveform inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1