Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-02-28 DOI:10.1145/3649310
Jiawei Huang, Akito Iizuka, Hajime Tanaka, Taku Komura, Yoshifumi Kitamura
{"title":"Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians","authors":"Jiawei Huang, Akito Iizuka, Hajime Tanaka, Taku Komura, Yoshifumi Kitamura","doi":"10.1145/3649310","DOIUrl":null,"url":null,"abstract":"<p>Importance sampling techniques significantly reduce variance in physically-based rendering. In this paper we propose a novel online framework to learn the spatial-varying distribution of the full product of the rendering equation, with a single small neural network using stochastic ray samples. The learned distributions can be used to efficiently sample the full product of incident light. To accomplish this, we introduce a novel closed-form density model, called the Normalized Anisotropic Spherical Gaussian mixture, that can model a complex light field with a small number of parameters and that can be directly sampled. Our framework progressively renders and learns the distribution, without requiring any warm-up phases. With the compact and expressive representation of our density model, our framework can be implemented entirely on the GPU, allowing it to produce high-quality images with limited computational resources. The results show that our framework outperforms existing neural path guiding approaches and achieves comparable or even better performance than state-of-the-art online statistical path guiding techniques.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"27 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649310","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Importance sampling techniques significantly reduce variance in physically-based rendering. In this paper we propose a novel online framework to learn the spatial-varying distribution of the full product of the rendering equation, with a single small neural network using stochastic ray samples. The learned distributions can be used to efficiently sample the full product of incident light. To accomplish this, we introduce a novel closed-form density model, called the Normalized Anisotropic Spherical Gaussian mixture, that can model a complex light field with a small number of parameters and that can be directly sampled. Our framework progressively renders and learns the distribution, without requiring any warm-up phases. With the compact and expressive representation of our density model, our framework can be implemented entirely on the GPU, allowing it to produce high-quality images with limited computational resources. The results show that our framework outperforms existing neural path guiding approaches and achieves comparable or even better performance than state-of-the-art online statistical path guiding techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用归一化各向异性球形高斯进行在线神经路径引导
重要性采样技术能显著减少基于物理的渲染中的差异。在本文中,我们提出了一个新颖的在线框架,利用随机光线采样,通过单个小型神经网络学习渲染方程全乘积的空间变化分布。学习到的分布可用于高效采样入射光的全积。为了实现这一目标,我们引入了一种新颖的闭式密度模型,称为归一化各向异性球形高斯混合物,它可以用少量参数对复杂光场进行建模,并可直接采样。我们的框架可以逐步渲染和学习该分布,无需任何预热阶段。由于我们的密度模型结构紧凑、表现力强,因此我们的框架可以完全在 GPU 上实现,从而可以利用有限的计算资源生成高质量的图像。结果表明,我们的框架优于现有的神经路径引导方法,其性能与最先进的在线统计路径引导技术相当,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1