José Antonio Sánchez, David Melendi, Roberto García, Xabiel G Pañeda, Víctor Corcoba, Dan García
{"title":"Distributed and collaborative system to improve traffic conditions using fuzzy logic and V2X communications","authors":"José Antonio Sánchez, David Melendi, Roberto García, Xabiel G Pañeda, Víctor Corcoba, Dan García","doi":"10.1016/j.vehcom.2024.100746","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, the increase in the number of vehicles on the roads has brought about several problems such as an increase in traffic congestion and, consequently, in polluting emissions. These problems are especially severe in urban environments. It is crucial to perform a sustainable urban mobility plan to improve the traffic and therefore, reduce the negative impacts caused by traffic jams. To this end, this paper presents a smart mobility plan that employs a collaborative driving strategy. Each vehicle tries to infer traffic conditions using its own status and the information shared by other peers. Using a fuzzy logic approach, vehicles perform decisions in accordance with the traffic levels inferred in real time. The designed mobility plan has been tested through a simulation environment and considering two types of urban areas in a typical European city (a peripheral area and a more congested city centre). If we compare the performance of traffic with and without the system designed, with our approach average speeds increase by up to 11.20 % and CO<sub>2</sub> emissions are reduced by up to 12.27 %. Thus, our results show that the mobility plan has helped to enhance the ability of cars to be able to solve problems caused by traffic congestion and traffic jams.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100746"},"PeriodicalIF":5.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214209624000214/pdfft?md5=0ad507bad4f079727d5ff5da5b28e826&pid=1-s2.0-S2214209624000214-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000214","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the increase in the number of vehicles on the roads has brought about several problems such as an increase in traffic congestion and, consequently, in polluting emissions. These problems are especially severe in urban environments. It is crucial to perform a sustainable urban mobility plan to improve the traffic and therefore, reduce the negative impacts caused by traffic jams. To this end, this paper presents a smart mobility plan that employs a collaborative driving strategy. Each vehicle tries to infer traffic conditions using its own status and the information shared by other peers. Using a fuzzy logic approach, vehicles perform decisions in accordance with the traffic levels inferred in real time. The designed mobility plan has been tested through a simulation environment and considering two types of urban areas in a typical European city (a peripheral area and a more congested city centre). If we compare the performance of traffic with and without the system designed, with our approach average speeds increase by up to 11.20 % and CO2 emissions are reduced by up to 12.27 %. Thus, our results show that the mobility plan has helped to enhance the ability of cars to be able to solve problems caused by traffic congestion and traffic jams.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.