Robert W Heckman, Caio Guilherme Pereira, Michael J Aspinwall, Thomas E Juenger
{"title":"Physiological Responses of C<sub>4</sub> Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints.","authors":"Robert W Heckman, Caio Guilherme Pereira, Michael J Aspinwall, Thomas E Juenger","doi":"10.1146/annurev-arplant-070623-093952","DOIUrl":null,"url":null,"abstract":"<p><p>C<sub>4</sub> perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C<sub>4</sub> perennial bioenergy grasses are predicted to thrive under climate change-C<sub>4</sub> photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO<sub>2</sub>], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C<sub>4</sub> perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C<sub>4</sub> physiology with recent advances in crop improvement, especially genomic selection.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"737-769"},"PeriodicalIF":21.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-070623-093952","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.