Pub Date : 2025-03-18DOI: 10.1146/annurev-arplant-083123-055521
Huakun Zhang, Yiliang Ding
RNA orchestrates intricate structures that influence gene expression and protein production in all living organisms, with implications for fundamental biology, medicine, and agriculture. Although extensive research has been conducted on RNA biology, many regulatory mechanisms remain elusive due to the complex and dynamic nature of RNA structures and past technological limitations. Recent advancements in RNA structure technology have revolutionized plant RNA biology research. Here, we review cutting-edge technologies for studying RNA structures in plants and their functional significance in diverse biological processes. Additionally, we highlight the pivotal role of RNA structure in influencing plant growth, development, and responses to environmental stresses. We also discuss the potential evolutionary significance of RNA structure in natural adaptation and crop domestication. Finally, we propose leveraging RNA structure-mediated gene regulation as an innovative strategy to bolster plant resilience against climate change.
{"title":"RNA Structure: Function and Application in Plant Biology.","authors":"Huakun Zhang, Yiliang Ding","doi":"10.1146/annurev-arplant-083123-055521","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-055521","url":null,"abstract":"<p><p>RNA orchestrates intricate structures that influence gene expression and protein production in all living organisms, with implications for fundamental biology, medicine, and agriculture. Although extensive research has been conducted on RNA biology, many regulatory mechanisms remain elusive due to the complex and dynamic nature of RNA structures and past technological limitations. Recent advancements in RNA structure technology have revolutionized plant RNA biology research. Here, we review cutting-edge technologies for studying RNA structures in plants and their functional significance in diverse biological processes. Additionally, we highlight the pivotal role of RNA structure in influencing plant growth, development, and responses to environmental stresses. We also discuss the potential evolutionary significance of RNA structure in natural adaptation and crop domestication. Finally, we propose leveraging RNA structure-mediated gene regulation as an innovative strategy to bolster plant resilience against climate change.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phytomelatonin has attracted significant attention over the years for its roles in promoting plant growth and enhancing stress resistance. The biosynthetic pathway of phytomelatonin is more intricate than that of melatonin in animals, occurring in plants in the endoplasmic reticulum, chloroplasts, mitochondria, and cytoplasm. By compartmentalizing phytomelatonin production within specific organelles and differentially expressing biosynthesis genes, plants may finely tune the levels of this hormone under normal growth conditions, as well as in rapid responses to changing environmental conditions. Phytomelatonin can interact with its receptor PMTR1, triggering G protein signaling, initiating ROS-Ca2+ signaling hubs, and activating MAPK cascades. Phytomelatonin's main role is promoting plant growth and development, whereas phytomelatonin-mediated resistance to numerous abiotic and biotic stresses is inducible and primed. The flexibility in the biosynthesis, together with the signaling pathways influenced, may contribute to phytomelatonin balancing the trade-offs between growth and stress resistance.
植物褪黑素在促进植物生长和增强抗逆性方面的作用多年来一直备受关注。植物褪黑素的生物合成途径比动物褪黑素的生物合成途径更为复杂,在植物体内的内质网、叶绿体、线粒体和细胞质中都会出现。通过在特定细胞器内对植物褪黑激素的产生进行分区,并对生物合成基因进行不同表达,植物可以在正常生长条件下精细调节这种激素的水平,并对不断变化的环境条件做出快速反应。植物褪黑激素可与其受体 PMTR1 相互作用,触发 G 蛋白信号,启动 ROS-Ca2+ 信号中枢,并激活 MAPK 级联。植物褪黑激素的主要作用是促进植物的生长和发育,而植物褪黑激素介导的对多种非生物和生物胁迫的抗性是可诱导和启动的。生物合成的灵活性以及受影响的信号通路可能有助于植物褪黑激素平衡生长和抗逆性之间的权衡。
{"title":"Phytomelatonin: Biosynthesis, Signaling, and Functions.","authors":"Qi Chen, Yanli Chen, Xue Li, Liping Zhang, Zed Rengel","doi":"10.1146/annurev-arplant-053124-045147","DOIUrl":"https://doi.org/10.1146/annurev-arplant-053124-045147","url":null,"abstract":"<p><p>Phytomelatonin has attracted significant attention over the years for its roles in promoting plant growth and enhancing stress resistance. The biosynthetic pathway of phytomelatonin is more intricate than that of melatonin in animals, occurring in plants in the endoplasmic reticulum, chloroplasts, mitochondria, and cytoplasm. By compartmentalizing phytomelatonin production within specific organelles and differentially expressing biosynthesis genes, plants may finely tune the levels of this hormone under normal growth conditions, as well as in rapid responses to changing environmental conditions. Phytomelatonin can interact with its receptor PMTR1, triggering G protein signaling, initiating ROS-Ca2+ signaling hubs, and activating MAPK cascades. Phytomelatonin's main role is promoting plant growth and development, whereas phytomelatonin-mediated resistance to numerous abiotic and biotic stresses is inducible and primed. The flexibility in the biosynthesis, together with the signaling pathways influenced, may contribute to phytomelatonin balancing the trade-offs between growth and stress resistance.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-14DOI: 10.1146/annurev-arplant-083123-074506
Poonam Mehra, Jason Banda, Lucas León Peralta Ogorek, Riccardo Fusi, Gabriel Castrillo, Tino Colombi, Bipin K Pandey, Craig J Sturrock, Darren M Wells, Malcolm J Bennett
Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heterogeneous distribution of nutrients. To aid their acclimation, roots alter their growth and development to optimize their architecture and actively regulate the physical, chemical, and biological properties of their rhizosphere. Understanding the complex interactions between roots and rhizosphere is critical for designing future crops with improved root traits better adapted to diverse and challenging soil conditions. However, studying roots and their interactions with soil under real-world conditions presents significant challenges. Addressing these challenges demands developing realistic laboratory-based model systems and innovative field-based root imaging techniques. Our review surveys the current knowledge and recent advances in understanding root-environment interactions while proposing future solutions to study roots under more "real-life" soil conditions.
{"title":"Root Growth and Development in \"Real Life\": Advances and Challenges in Studying Root-Environment Interactions.","authors":"Poonam Mehra, Jason Banda, Lucas León Peralta Ogorek, Riccardo Fusi, Gabriel Castrillo, Tino Colombi, Bipin K Pandey, Craig J Sturrock, Darren M Wells, Malcolm J Bennett","doi":"10.1146/annurev-arplant-083123-074506","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-074506","url":null,"abstract":"<p><p>Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heterogeneous distribution of nutrients. To aid their acclimation, roots alter their growth and development to optimize their architecture and actively regulate the physical, chemical, and biological properties of their rhizosphere. Understanding the complex interactions between roots and rhizosphere is critical for designing future crops with improved root traits better adapted to diverse and challenging soil conditions. However, studying roots and their interactions with soil under real-world conditions presents significant challenges. Addressing these challenges demands developing realistic laboratory-based model systems and innovative field-based root imaging techniques. Our review surveys the current knowledge and recent advances in understanding root-environment interactions while proposing future solutions to study roots under more \"real-life\" soil conditions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-10DOI: 10.1146/annurev-arplant-083123-082752
Christelle Aurélie Maud Robert, Paul Himmighofen, Sarah McLaughlin, Tristan M Cofer, Sheharyar Ahmed Khan, Alexandra Siffert, Joëlle Sasse
Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.
{"title":"Environmental and Biological Drivers of Root Exudation.","authors":"Christelle Aurélie Maud Robert, Paul Himmighofen, Sarah McLaughlin, Tristan M Cofer, Sheharyar Ahmed Khan, Alexandra Siffert, Joëlle Sasse","doi":"10.1146/annurev-arplant-083123-082752","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-082752","url":null,"abstract":"<p><p>Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-10DOI: 10.1146/annurev-arplant-070324-041348
Vilde O Lalun, Melinka A Butenko
Throughout the life cycle of a plant, numerous responses need to be carefully regulated to ensure proper development and appropriate responses to external stimuli, and plant hormones play a crucial role in this regulation. Since the early 1990s, there has been expansive research elucidating the central role that peptide ligands play as intrinsic short- and long-distance communicators during development and as regulators of phenotypic plasticity. In this review, we focus on recently discovered mechanisms that ensure correct spatial and temporal cellular responses triggered by peptide ligands and provide examples of how peptide processing proteins and apoplastic conditions can regulate peptide activity in a timely manner.
{"title":"Plant Peptide Ligands as Temporal and Spatial Regulators.","authors":"Vilde O Lalun, Melinka A Butenko","doi":"10.1146/annurev-arplant-070324-041348","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070324-041348","url":null,"abstract":"<p><p>Throughout the life cycle of a plant, numerous responses need to be carefully regulated to ensure proper development and appropriate responses to external stimuli, and plant hormones play a crucial role in this regulation. Since the early 1990s, there has been expansive research elucidating the central role that peptide ligands play as intrinsic short- and long-distance communicators during development and as regulators of phenotypic plasticity. In this review, we focus on recently discovered mechanisms that ensure correct spatial and temporal cellular responses triggered by peptide ligands and provide examples of how peptide processing proteins and apoplastic conditions can regulate peptide activity in a timely manner.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-04DOI: 10.1146/annurev-arplant-083123-075017
Berit Ebert, Ariel Orellana
Eukaryotic glycobiology revolves around nucleotide sugar transporters (NSTs), which are critical for glycan biosynthesis in the Golgi apparatus and endoplasmic reticulum. In plants, NSTs share similarities with triose phosphate translocators (TPTs) and together form the NST/TPT superfamily. Major research efforts over the last decades have led to the biochemical characterization of several of these transporters and addressed their role in cell wall polysaccharide and glycoconjugate biosynthesis, revealing precise substrate specificity and function. While recent insights gained from NST and TPT crystal structures promise to unravel the molecular mechanisms governing these membrane proteins, their regulation and dynamic behavior remain enigmatic. Likewise, many uncharacterized and orphan NSTs pose exciting questions about the biology of the endomembrane system. We discuss the progress in this active research area and stimulate consideration for the intriguing outstanding questions with a view to establish a foundation for applications in plant engineering and biopolymer production.
{"title":"Nucleotide Sugar Transporters: Orchestrating Luminal Glycosylation in Plants.","authors":"Berit Ebert, Ariel Orellana","doi":"10.1146/annurev-arplant-083123-075017","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-075017","url":null,"abstract":"<p><p>Eukaryotic glycobiology revolves around nucleotide sugar transporters (NSTs), which are critical for glycan biosynthesis in the Golgi apparatus and endoplasmic reticulum. In plants, NSTs share similarities with triose phosphate translocators (TPTs) and together form the NST/TPT superfamily. Major research efforts over the last decades have led to the biochemical characterization of several of these transporters and addressed their role in cell wall polysaccharide and glycoconjugate biosynthesis, revealing precise substrate specificity and function. While recent insights gained from NST and TPT crystal structures promise to unravel the molecular mechanisms governing these membrane proteins, their regulation and dynamic behavior remain enigmatic. Likewise, many uncharacterized and orphan NSTs pose exciting questions about the biology of the endomembrane system. We discuss the progress in this active research area and stimulate consideration for the intriguing outstanding questions with a view to establish a foundation for applications in plant engineering and biopolymer production.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-03DOI: 10.1146/annurev-arplant-083023-041225
Rachelle R Q Lee, Eunyoung Chae
Immune system incompatibilities between naturally occurring genomic variants underlie many hybrid defects in plants and present a barrier for crop improvement. In this review, we approach immune system incompatibilities from pan-genomic and network perspectives. Pan-genomes offer insights into how natural variation shapes the evolutionary landscape of immune system incompatibilities, and through it, selection, polymorphisms, and recombination resistance emerge as common features that synergistically drive these incompatibilities. By contextualizing incompatibilities within the immune network, immune receptor promiscuity, complex dysregulation, and single-point failure appear to be recurrent themes of immune system defects. As geneticists break genes to investigate their function, so can we investigate broken immune systems to enrich our understanding of plant immune systems and work toward improving them.
{"title":"Monkeys at Rigged Typewriters: A Population and Network View of Plant Immune System Incompatibility.","authors":"Rachelle R Q Lee, Eunyoung Chae","doi":"10.1146/annurev-arplant-083023-041225","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083023-041225","url":null,"abstract":"<p><p>Immune system incompatibilities between naturally occurring genomic variants underlie many hybrid defects in plants and present a barrier for crop improvement. In this review, we approach immune system incompatibilities from pan-genomic and network perspectives. Pan-genomes offer insights into how natural variation shapes the evolutionary landscape of immune system incompatibilities, and through it, selection, polymorphisms, and recombination resistance emerge as common features that synergistically drive these incompatibilities. By contextualizing incompatibilities within the immune network, immune receptor promiscuity, complex dysregulation, and single-point failure appear to be recurrent themes of immune system defects. As geneticists break genes to investigate their function, so can we investigate broken immune systems to enrich our understanding of plant immune systems and work toward improving them.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-03DOI: 10.1146/annurev-arplant-083123-054357
Guohui Xie, Xuan Du, Hongmiao Hu, Jiamu Du
Methylation at the fifth position of the cytosine base (5mC) is a critical DNA modification with important functions in gene silencing, genome imprinting, and suppression of transposable elements in eukaryotes. Biochemically, DNA methylation is dynamically regulated by three critical processes: the de novo establishment of DNA methylation, the maintenance of DNA methylation by preexisting methylation patterns, and the removal of DNA methylation. In plants, DNA methylation is very complex with unique features. In past decades, a series of biochemical and structural studies, especially empowered by the recent breakthroughs of high-resolution cryogenic electron microscopy, have helped uncover the molecular mechanisms underlying the establishment, maintenance, and removal of DNA methylation in plants. This review summarizes recent research advances in these three aspects of DNA methylation and lays out a molecular view of plant DNA methylation from biochemical and structural perspectives.
{"title":"Molecular Mechanisms Underlying the Establishment, Maintenance, and Removal of DNA Methylation in Plants.","authors":"Guohui Xie, Xuan Du, Hongmiao Hu, Jiamu Du","doi":"10.1146/annurev-arplant-083123-054357","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-054357","url":null,"abstract":"<p><p>Methylation at the fifth position of the cytosine base (5mC) is a critical DNA modification with important functions in gene silencing, genome imprinting, and suppression of transposable elements in eukaryotes. Biochemically, DNA methylation is dynamically regulated by three critical processes: the de novo establishment of DNA methylation, the maintenance of DNA methylation by preexisting methylation patterns, and the removal of DNA methylation. In plants, DNA methylation is very complex with unique features. In past decades, a series of biochemical and structural studies, especially empowered by the recent breakthroughs of high-resolution cryogenic electron microscopy, have helped uncover the molecular mechanisms underlying the establishment, maintenance, and removal of DNA methylation in plants. This review summarizes recent research advances in these three aspects of DNA methylation and lays out a molecular view of plant DNA methylation from biochemical and structural perspectives.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1146/annurev-arplant-071123-095146
Laura Leventhal, Megan Ruffley, Moises Exposito-Alonso
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
{"title":"Planting Genomes in the Wild: <i>Arabidopsis</i> From Genetics History to the Ecology and Evolutionary Genomics Era.","authors":"Laura Leventhal, Megan Ruffley, Moises Exposito-Alonso","doi":"10.1146/annurev-arplant-071123-095146","DOIUrl":"https://doi.org/10.1146/annurev-arplant-071123-095146","url":null,"abstract":"<p><p>The genetics model system <i>Arabidopsis thaliana</i> (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on <i>Arabidopsis</i> following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 <i>Arabidopsis</i> outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1146/annurev-arplant-083123-090055
Abdulrahman Alhabsi, Yu Ling, Martin Crespi, Anireddy S N Reddy, Magdy Mahfouz
Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.
{"title":"Alternative Splicing Dynamics in Plant Adaptive Responses to Stress.","authors":"Abdulrahman Alhabsi, Yu Ling, Martin Crespi, Anireddy S N Reddy, Magdy Mahfouz","doi":"10.1146/annurev-arplant-083123-090055","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-090055","url":null,"abstract":"<p><p>Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}