Pub Date : 2026-02-05DOI: 10.1146/annurev-arplant-070225-040214
Ricardo F H Giehl, Gabriel Schaaf
Inositol phosphates and pyrophosphates are small, water-soluble molecules involved in a range of physiological processes across eukaryotic organisms, including plants. Over the past two decades, significant advancements in inositol (pyro)phosphate detection and chemical synthesis, coupled with the characterization of plant mutants and the structural analysis of receptors and associated proteins, have greatly enhanced our understanding of their production, degradation, and perception in plants. This growing knowledge base demonstrates that inositol (pyro)phosphates are crucial for regulating key processes, such as phosphorus homeostasis, hormone signaling, and plant-microbe interactions. We provide a global perspective on these processes, highlighting recent discoveries, new possibilities, and unresolved questions.
{"title":"Metabolism, Perception, and Functions of Inositol (Pyro)Phosphates in Plants.","authors":"Ricardo F H Giehl, Gabriel Schaaf","doi":"10.1146/annurev-arplant-070225-040214","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070225-040214","url":null,"abstract":"<p><p>Inositol phosphates and pyrophosphates are small, water-soluble molecules involved in a range of physiological processes across eukaryotic organisms, including plants. Over the past two decades, significant advancements in inositol (pyro)phosphate detection and chemical synthesis, coupled with the characterization of plant mutants and the structural analysis of receptors and associated proteins, have greatly enhanced our understanding of their production, degradation, and perception in plants. This growing knowledge base demonstrates that inositol (pyro)phosphates are crucial for regulating key processes, such as phosphorus homeostasis, hormone signaling, and plant-microbe interactions. We provide a global perspective on these processes, highlighting recent discoveries, new possibilities, and unresolved questions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-29DOI: 10.1146/annurev-arplant-063025-110704
Benjamin L Koch, Meenu Singla-Rastogi, Roger W Innes
Plants and microbes exchange macromolecules such as RNA and proteins. How this exchange is accomplished is poorly understood, but extracellular vesicles (EVs) have been proposed as likely vehicles. Here, we review recent work on the biogenesis and functions of plant EVs and the current evidence in support of and against their role in cross-kingdom RNA interference. Plant EVs, like EVs from other kingdoms of life, are released in part by the fusion of multivesicular bodies with the plasma membrane, a complex and conserved mechanism involving lipid-modifying proteins, the exocyst complex, and Rab GTPases. Though some plant EV subpopulations are involved in immunity, it appears unlikely that plant EVs contribute to cross-kingdom RNA interference. Recent work has shown that plants secrete extravesicular RNA, including small RNAs and long noncoding RNAs, into the leaf apoplast and onto leaf surfaces, while very little RNA is found inside of EVs. We propose that these free extracellular RNAs play a central role in maintaining a healthy leaf microbiome.
{"title":"Extracellular Vesicles and Extracellular RNAs in Plant-Microbe Interactions.","authors":"Benjamin L Koch, Meenu Singla-Rastogi, Roger W Innes","doi":"10.1146/annurev-arplant-063025-110704","DOIUrl":"https://doi.org/10.1146/annurev-arplant-063025-110704","url":null,"abstract":"<p><p>Plants and microbes exchange macromolecules such as RNA and proteins. How this exchange is accomplished is poorly understood, but extracellular vesicles (EVs) have been proposed as likely vehicles. Here, we review recent work on the biogenesis and functions of plant EVs and the current evidence in support of and against their role in cross-kingdom RNA interference. Plant EVs, like EVs from other kingdoms of life, are released in part by the fusion of multivesicular bodies with the plasma membrane, a complex and conserved mechanism involving lipid-modifying proteins, the exocyst complex, and Rab GTPases. Though some plant EV subpopulations are involved in immunity, it appears unlikely that plant EVs contribute to cross-kingdom RNA interference. Recent work has shown that plants secrete extravesicular RNA, including small RNAs and long noncoding RNAs, into the leaf apoplast and onto leaf surfaces, while very little RNA is found inside of EVs. We propose that these free extracellular RNAs play a central role in maintaining a healthy leaf microbiome.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146083959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1146/annurev-arplant-070225-034846
James Barrett, Onyou Nam, Mihris I S Naduthodi, Luke C M Mackinder
Pyrenoids are eukaryotic CO2-fixing organelles that are evolutionarily diverse, globally abundant, and critical to global carbon cycling. Despite being described over 200 years ago, the vast majority of our molecular understanding of pyrenoids has emerged only in the past decade. Here, we review the recent advances in characterizing pyrenoid structure, function, and evolutionary variation across lineages containing primary, secondary, and tertiary plastids of both red and green origins. We outline experimental frameworks that can be used to answer key questions about these enigmatic organelles. We discuss the utility of pyrenoids as model biomolecular condensates for investigating fundamental properties of liquid-liquid phase separation. Finally, we summarize how understanding convergently evolved pyrenoids across diverse lineages may be used to advance efforts to engineer functional pyrenoids into crop plants to enhance CO2 fixation for yield improvements and carbon dioxide removal.
{"title":"Pyrenoid Structure, Function, Evolution, and Characterization Across Diverse Lineages.","authors":"James Barrett, Onyou Nam, Mihris I S Naduthodi, Luke C M Mackinder","doi":"10.1146/annurev-arplant-070225-034846","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070225-034846","url":null,"abstract":"<p><p>Pyrenoids are eukaryotic CO<sub>2</sub>-fixing organelles that are evolutionarily diverse, globally abundant, and critical to global carbon cycling. Despite being described over 200 years ago, the vast majority of our molecular understanding of pyrenoids has emerged only in the past decade. Here, we review the recent advances in characterizing pyrenoid structure, function, and evolutionary variation across lineages containing primary, secondary, and tertiary plastids of both red and green origins. We outline experimental frameworks that can be used to answer key questions about these enigmatic organelles. We discuss the utility of pyrenoids as model biomolecular condensates for investigating fundamental properties of liquid-liquid phase separation. Finally, we summarize how understanding convergently evolved pyrenoids across diverse lineages may be used to advance efforts to engineer functional pyrenoids into crop plants to enhance CO<sub>2</sub> fixation for yield improvements and carbon dioxide removal.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145965056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant cells possess functionally specialized RNA polymerases (RNAPs) in both the nucleus and the chloroplast. In addition to the conserved RNA polymerase I (Pol I), Pol II, and Pol III, the nuclear genome of land plant cells encodes two unique multiple-subunit DNA-dependent RNAPs-Pol IV and Pol V-which produce noncoding RNAs for nuclear gene silencing. The plastid genome of all plant cells also encodes a unique multiple-subunit DNA-dependent RNAP-the plastid-encoded RNAP (PEP). Phylogenetic analyses indicate that these plant-specific RNAPs have clear evolutionary origins: Pol IV and Pol V diverged from Pol II, while PEP originated from cyanobacterial RNAP. Over billions of years, these plant-specific RNAPs underwent functional specialization through losing key residues, motifs, and domains essential to their ancestors' function and gaining new motifs, domains, and subunits tailored to their distinct roles. This review explores the evolutionary loss-and-gain strategy that shaped the three plant-specific RNAPs.
{"title":"The Loss-and-Gain Strategy for Functional Specialization of Plant-Specific RNA Polymerases.","authors":"Xiaoxian Wu, Kun Huang, Hongwei Zhang, Shuyi Sun, Zhanxi Gu, Hong Sun, Yuxiang Zhang, Xujiao Liu, Wenhui Mu, Weiying Xu, Yu Zhang","doi":"10.1146/annurev-arplant-063025-102003","DOIUrl":"https://doi.org/10.1146/annurev-arplant-063025-102003","url":null,"abstract":"<p><p>Plant cells possess functionally specialized RNA polymerases (RNAPs) in both the nucleus and the chloroplast. In addition to the conserved RNA polymerase I (Pol I), Pol II, and Pol III, the nuclear genome of land plant cells encodes two unique multiple-subunit DNA-dependent RNAPs-Pol IV and Pol V-which produce noncoding RNAs for nuclear gene silencing. The plastid genome of all plant cells also encodes a unique multiple-subunit DNA-dependent RNAP-the plastid-encoded RNAP (PEP). Phylogenetic analyses indicate that these plant-specific RNAPs have clear evolutionary origins: Pol IV and Pol V diverged from Pol II, while PEP originated from cyanobacterial RNAP. Over billions of years, these plant-specific RNAPs underwent functional specialization through losing key residues, motifs, and domains essential to their ancestors' function and gaining new motifs, domains, and subunits tailored to their distinct roles. This review explores the evolutionary loss-and-gain strategy that shaped the three plant-specific RNAPs.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145965022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1146/annurev-arplant-083123-073106
J A Saccheri, Kirsten Ten Tusscher
Developmental patterning-such as longitudinal zonation of roots in growth domains, the transversal subdivision into layers of distinct cell types, and asymmetric growth during tropisms-is inherently multiscale and multiprocess. Consequently, computational models integrating these processes and scales are powerful tools to test whether our current understanding of involved players is both necessary and sufficient. Additionally, models help identify missing factors and reveal how the whole exceeds the sum of its parts. In this review, we discuss influential models that have advanced our understanding of root development and its adaptation to environmental conditions. We also highlight the potential for further integration of growth, mechanics, physiology, and physicochemical processes in these models. Such expansions are critical to advance the explanatory power of current models beyond genetic causes and identify the importance of cell size, nutrients, forces, pH, and ionic charge for developmental processes.
{"title":"Computational Modeling of Plant Roots: Development Meets Physiology and Adaptation.","authors":"J A Saccheri, Kirsten Ten Tusscher","doi":"10.1146/annurev-arplant-083123-073106","DOIUrl":"https://doi.org/10.1146/annurev-arplant-083123-073106","url":null,"abstract":"<p><p>Developmental patterning-such as longitudinal zonation of roots in growth domains, the transversal subdivision into layers of distinct cell types, and asymmetric growth during tropisms-is inherently multiscale and multiprocess. Consequently, computational models integrating these processes and scales are powerful tools to test whether our current understanding of involved players is both necessary and sufficient. Additionally, models help identify missing factors and reveal how the whole exceeds the sum of its parts. In this review, we discuss influential models that have advanced our understanding of root development and its adaptation to environmental conditions. We also highlight the potential for further integration of growth, mechanics, physiology, and physicochemical processes in these models. Such expansions are critical to advance the explanatory power of current models beyond genetic causes and identify the importance of cell size, nutrients, forces, pH, and ionic charge for developmental processes.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145965028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1146/annurev-arplant-060625-084713
Frank Hochholdinger, Peng Yu
Cereal root systems are critical for nutrient and water uptake as well as for anchorage and thus for plant productivity. This review synthesizes the current understanding of the morphological and cellular organization and the genetic regulation of the different cereal root types. We highlight conserved and lineage-specific developmental mechanisms across maize, rice, and barley. Genetic dissection of cereal root system formation has uncovered key regulators of root initiation and elongation as well as genes controlling root architecture via the root setpoint angle. Moreover, we discuss genes that determine cell and tissue identity and genes that link root traits to domestication. By integrating molecular genetics with developmental and evolutionary perspectives, we highlight how insights into the molecular mechanisms of root system architecture can contribute to the production of high-yielding and at the same time sustainable crops, ensuring global food security.
{"title":"The Genetic Basis and Domestication of Root System Architecture in Cereals.","authors":"Frank Hochholdinger, Peng Yu","doi":"10.1146/annurev-arplant-060625-084713","DOIUrl":"https://doi.org/10.1146/annurev-arplant-060625-084713","url":null,"abstract":"<p><p>Cereal root systems are critical for nutrient and water uptake as well as for anchorage and thus for plant productivity. This review synthesizes the current understanding of the morphological and cellular organization and the genetic regulation of the different cereal root types. We highlight conserved and lineage-specific developmental mechanisms across maize, rice, and barley. Genetic dissection of cereal root system formation has uncovered key regulators of root initiation and elongation as well as genes controlling root architecture via the root setpoint angle. Moreover, we discuss genes that determine cell and tissue identity and genes that link root traits to domestication. By integrating molecular genetics with developmental and evolutionary perspectives, we highlight how insights into the molecular mechanisms of root system architecture can contribute to the production of high-yielding and at the same time sustainable crops, ensuring global food security.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":26.5,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145965077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-03-10DOI: 10.1146/annurev-arplant-083123-082752
Christelle Aurélie Maud Robert, Paul Himmighofen, Sarah McLaughlin, Tristan M Cofer, Sheharyar Ahmed Khan, Alexandra Siffert, Joëlle Sasse
Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.
{"title":"Environmental and Biological Drivers of Root Exudation.","authors":"Christelle Aurélie Maud Robert, Paul Himmighofen, Sarah McLaughlin, Tristan M Cofer, Sheharyar Ahmed Khan, Alexandra Siffert, Joëlle Sasse","doi":"10.1146/annurev-arplant-083123-082752","DOIUrl":"10.1146/annurev-arplant-083123-082752","url":null,"abstract":"<p><p>Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"317-339"},"PeriodicalIF":26.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-03-28DOI: 10.1146/annurev-arplant-061824-090615
James H Rowe, Max Josse, Bijun Tang, Alexander M Jones
Plant biology is undergoing a spatial omics revolution, but these approaches are limited to snapshots of a plant's state. Direct, genetically encoded fluorescent biosensors complement the omics approaches, giving researchers tools to assess energetic, metabolic, and signaling molecules at multiple scales, from fast subcellular dynamics to organismal patterns in living plants. This review focuses on how biosensors illuminate plant biology across these scales and the major discoveries to which they have contributed. We also discuss the core principles and common pitfalls affecting biosensor engineering, deployment, imaging, and analysis to help aspiring biosensor researchers. Innovative technologies are driving forward developments both biological and technical with implications for synergizing biosensor research with other approaches and expanding the scope of in vivo quantitative biology.
{"title":"Quantifying Plant Biology with Fluorescent Biosensors.","authors":"James H Rowe, Max Josse, Bijun Tang, Alexander M Jones","doi":"10.1146/annurev-arplant-061824-090615","DOIUrl":"10.1146/annurev-arplant-061824-090615","url":null,"abstract":"<p><p>Plant biology is undergoing a spatial omics revolution, but these approaches are limited to snapshots of a plant's state. Direct, genetically encoded fluorescent biosensors complement the omics approaches, giving researchers tools to assess energetic, metabolic, and signaling molecules at multiple scales, from fast subcellular dynamics to organismal patterns in living plants. This review focuses on how biosensors illuminate plant biology across these scales and the major discoveries to which they have contributed. We also discuss the core principles and common pitfalls affecting biosensor engineering, deployment, imaging, and analysis to help aspiring biosensor researchers. Innovative technologies are driving forward developments both biological and technical with implications for synergizing biosensor research with other approaches and expanding the scope of in vivo quantitative biology.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"285-315"},"PeriodicalIF":26.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-02-14DOI: 10.1146/annurev-arplant-083123-071512
Sheng Zhong, Zijun Lan, Li-Jia Qu
The colonization of land by plants marked a pivotal transformation in terrestrial ecosystems. In order to adapt to the terrestrial environment, angiosperms, which dominate the terrestrial flora with around 300,000 species, have evolved sophisticated mechanisms for sexual reproduction involving intricate interactions between male and female structures, starting from pollen deposition on the stigma and culminating in double fertilization within the ovule. The pollen tube plays a crucial role by navigating through female tissues to deliver sperm cells. The molecular intricacies of these male-female interactions, involving numerous signaling pathways and regulatory proteins, have been extensively studied over the past two decades. This review summarizes recent findings on the regulatory mechanisms of these male-female interactions in angiosperms. We aim to provide a comprehensive understanding of plant reproductive biology and highlight the implications of these mechanisms for crop improvement and the development of new agricultural technologies.
{"title":"Ingenious Male-Female Communication Ensures Successful Double Fertilization in Angiosperms.","authors":"Sheng Zhong, Zijun Lan, Li-Jia Qu","doi":"10.1146/annurev-arplant-083123-071512","DOIUrl":"10.1146/annurev-arplant-083123-071512","url":null,"abstract":"<p><p>The colonization of land by plants marked a pivotal transformation in terrestrial ecosystems. In order to adapt to the terrestrial environment, angiosperms, which dominate the terrestrial flora with around 300,000 species, have evolved sophisticated mechanisms for sexual reproduction involving intricate interactions between male and female structures, starting from pollen deposition on the stigma and culminating in double fertilization within the ovule. The pollen tube plays a crucial role by navigating through female tissues to deliver sperm cells. The molecular intricacies of these male-female interactions, involving numerous signaling pathways and regulatory proteins, have been extensively studied over the past two decades. This review summarizes recent findings on the regulatory mechanisms of these male-female interactions in angiosperms. We aim to provide a comprehensive understanding of plant reproductive biology and highlight the implications of these mechanisms for crop improvement and the development of new agricultural technologies.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"401-431"},"PeriodicalIF":26.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-02-14DOI: 10.1146/annurev-arplant-083123-090055
Abdulrahman Alhabsi, Yu Ling, Martin Crespi, Anireddy S N Reddy, Magdy Mahfouz
Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.
{"title":"Alternative Splicing Dynamics in Plant Adaptive Responses to Stress.","authors":"Abdulrahman Alhabsi, Yu Ling, Martin Crespi, Anireddy S N Reddy, Magdy Mahfouz","doi":"10.1146/annurev-arplant-083123-090055","DOIUrl":"10.1146/annurev-arplant-083123-090055","url":null,"abstract":"<p><p>Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"687-717"},"PeriodicalIF":26.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}