Jacob Kronenberg, Stanley Chu, Andrew Olsen, Dustin Britton, Leif Halvorsen, Shengbo Guo, Ashwitha Lakshmi, Jason Chen, Maria Jinu Kulapurathazhe, Cetara A. Baker, Benjamin C. Wadsworth, Cynthia J. Van Acker, John G. Lehman III, Tamara C. Otto, P. Douglas Renfrew, Richard Bonneau, Jin Kim Montclare
{"title":"Computational Design of Phosphotriesterase Improves V-Agent Degradation Efficiency","authors":"Jacob Kronenberg, Stanley Chu, Andrew Olsen, Dustin Britton, Leif Halvorsen, Shengbo Guo, Ashwitha Lakshmi, Jason Chen, Maria Jinu Kulapurathazhe, Cetara A. Baker, Benjamin C. Wadsworth, Cynthia J. Van Acker, John G. Lehman III, Tamara C. Otto, P. Douglas Renfrew, Richard Bonneau, Jin Kim Montclare","doi":"10.1002/open.202300263","DOIUrl":null,"url":null,"abstract":"<p>Organophosphates (OPs) are a class of neurotoxic acetylcholinesterase inhibitors including widely used pesticides as well as nerve agents such as VX and VR. Current treatment of these toxins relies on reactivating acetylcholinesterase, which remains ineffective. Enzymatic scavengers are of interest for their ability to degrade OPs systemically before they reach their target. Here we describe a library of computationally designed variants of phosphotriesterase (PTE), an enzyme that is known to break down OPs. The mutations G208D, F104A, K77A, A80V, H254G, and I274N broadly improve catalytic efficiency of VX and VR hydrolysis without impacting the structure of the enzyme. The mutation I106 A improves catalysis of VR and L271E abolishes activity, likely due to disruptions of PTE's structure. This study elucidates the importance of these residues and contributes to the design of enzymatic OP scavengers with improved efficiency.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202300263","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphates (OPs) are a class of neurotoxic acetylcholinesterase inhibitors including widely used pesticides as well as nerve agents such as VX and VR. Current treatment of these toxins relies on reactivating acetylcholinesterase, which remains ineffective. Enzymatic scavengers are of interest for their ability to degrade OPs systemically before they reach their target. Here we describe a library of computationally designed variants of phosphotriesterase (PTE), an enzyme that is known to break down OPs. The mutations G208D, F104A, K77A, A80V, H254G, and I274N broadly improve catalytic efficiency of VX and VR hydrolysis without impacting the structure of the enzyme. The mutation I106 A improves catalysis of VR and L271E abolishes activity, likely due to disruptions of PTE's structure. This study elucidates the importance of these residues and contributes to the design of enzymatic OP scavengers with improved efficiency.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.