Single-cell RNA sequencing reveals the altered innate immunity in immune checkpoint inhibitor-related myocarditis

IF 4.9 3区 医学 Q2 IMMUNOLOGY Immunology Pub Date : 2024-02-29 DOI:10.1111/imm.13770
Bowen Lou, Manyun Guo, Tao Zheng, Junhui Liu, Chen Wang, Tao Chen, Fangyuan Chen, Xiaojuan Fan, Shanshan Gao, Xiao Liang, Hua Qiang, Lijuan Li, Bo Zhou, Zuyi Yuan, Jianqing She
{"title":"Single-cell RNA sequencing reveals the altered innate immunity in immune checkpoint inhibitor-related myocarditis","authors":"Bowen Lou,&nbsp;Manyun Guo,&nbsp;Tao Zheng,&nbsp;Junhui Liu,&nbsp;Chen Wang,&nbsp;Tao Chen,&nbsp;Fangyuan Chen,&nbsp;Xiaojuan Fan,&nbsp;Shanshan Gao,&nbsp;Xiao Liang,&nbsp;Hua Qiang,&nbsp;Lijuan Li,&nbsp;Bo Zhou,&nbsp;Zuyi Yuan,&nbsp;Jianqing She","doi":"10.1111/imm.13770","DOIUrl":null,"url":null,"abstract":"<p>Myocarditis has emerged as a rare but lethal immune checkpoint inhibitor (ICI)-associated toxicity. However, the exact mechanism and the specific therapeutic targets remain underexplored. In this study, we aim to characterise the transcriptomic profiles based on single-cell RNA sequencing from ICI-related myocarditis. Peripheral blood mononuclear cell (PBMC) samples were collected from four groups for single-cell RNA sequencing: (1) patients with newly diagnosed lung squamous cell carcinoma before treatment (Control Group); (2) patients with lung squamous cell carcinoma with PD-1 inhibitor therapy who did not develop myocarditis (PD-1 Group); (3) patients during fulminant ICI-related myocarditis onset (Myocarditis Group); and (4) Patients with fulminant ICI-related myocarditis during disease remission (Recovery Group). Subcluster determination, functional analysis, single-cell trajectory and cell–cell interaction analysis were performed after scRNA-seq. Bulk-RNA sequencing was performed for further validation. Our results revealed the diversity of cellular populations in ICI-related myocarditis, marked by their distinct transcriptional profiles and biological functions. Monocytes, NKs as well as B cells contribute to the regulation of innate immunity and inflammation in ICI-related myocarditis. With integrated analysis of scRNA-seq and bulk sequencing, we identified S100A protein family as a potential serum marker for ICI-related myocarditis. Our study has created a cell atlas of PBMC during ICI-related myocarditis, which would shed light on the pathophysiological mechanism and potential therapeutic targets of ICI-related myocarditis in continuous exploration.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"172 2","pages":"235-251"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13770","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocarditis has emerged as a rare but lethal immune checkpoint inhibitor (ICI)-associated toxicity. However, the exact mechanism and the specific therapeutic targets remain underexplored. In this study, we aim to characterise the transcriptomic profiles based on single-cell RNA sequencing from ICI-related myocarditis. Peripheral blood mononuclear cell (PBMC) samples were collected from four groups for single-cell RNA sequencing: (1) patients with newly diagnosed lung squamous cell carcinoma before treatment (Control Group); (2) patients with lung squamous cell carcinoma with PD-1 inhibitor therapy who did not develop myocarditis (PD-1 Group); (3) patients during fulminant ICI-related myocarditis onset (Myocarditis Group); and (4) Patients with fulminant ICI-related myocarditis during disease remission (Recovery Group). Subcluster determination, functional analysis, single-cell trajectory and cell–cell interaction analysis were performed after scRNA-seq. Bulk-RNA sequencing was performed for further validation. Our results revealed the diversity of cellular populations in ICI-related myocarditis, marked by their distinct transcriptional profiles and biological functions. Monocytes, NKs as well as B cells contribute to the regulation of innate immunity and inflammation in ICI-related myocarditis. With integrated analysis of scRNA-seq and bulk sequencing, we identified S100A protein family as a potential serum marker for ICI-related myocarditis. Our study has created a cell atlas of PBMC during ICI-related myocarditis, which would shed light on the pathophysiological mechanism and potential therapeutic targets of ICI-related myocarditis in continuous exploration.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞 RNA 测序揭示了免疫检查点抑制剂相关心肌炎中先天性免疫的改变。
心肌炎已成为一种罕见但致命的免疫检查点抑制剂(ICI)相关毒性。然而,确切的机制和特定的治疗靶点仍未得到充分探索。在本研究中,我们旨在基于单细胞 RNA 测序分析 ICI 相关心肌炎的转录组特征。我们采集了四组患者的外周血单核细胞(PBMC)样本进行单细胞 RNA 测序:(1)治疗前新确诊的肺鳞癌患者(对照组);(2)接受过PD-1抑制剂治疗但未发展为心肌炎的肺鳞癌患者(PD-1组);(3)ICI相关的暴发性心肌炎发病期患者(心肌炎组);(4)疾病缓解期的ICI相关的暴发性心肌炎患者(康复组)。scRNA-seq后进行了亚簇确定、功能分析、单细胞轨迹和细胞间相互作用分析。为了进一步验证,还进行了大量 RNA 测序。我们的研究结果揭示了 ICI 相关心肌炎中细胞群的多样性,这些细胞群具有不同的转录谱和生物学功能。在 ICI 相关性心肌炎中,单核细胞、NKs 和 B 细胞参与了先天性免疫和炎症的调控。通过对 scRNA-seq 和大量测序的综合分析,我们发现 S100A 蛋白家族是 ICI 相关性心肌炎的潜在血清标志物。我们的研究建立了ICI相关性心肌炎期间PBMC的细胞图谱,这将揭示ICI相关性心肌炎的病理生理机制和潜在治疗靶点,并将继续探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunology
Immunology 医学-免疫学
CiteScore
11.90
自引率
1.60%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers. Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology. The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.
期刊最新文献
IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. LGR4 Deficiency Aggravates Skin Inflammation and Epidermal Hyperplasia in Imiquimod-Induced Psoriasis. SNX17 Regulates Antigen Internalisation and Phagosomal Maturation by Dendritic Cells. Metabolic Regulation of Inflammation: Exploring the Potential Benefits of Itaconate in Autoimmune Disorders. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1