{"title":"Coexistence of IL12Rβ1 and BTK Mutations in a Family.","authors":"Hulya Kose, Orhan Gorukmez, Sara Sebnem Kilic","doi":"10.1111/imm.13874","DOIUrl":"https://doi.org/10.1111/imm.13874","url":null,"abstract":"","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Durre Aden, Niti Sureka, Samreen Zaheer, Jai Kumar Chaurasia, Sufian Zaheer
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
{"title":"Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment.","authors":"Durre Aden, Niti Sureka, Samreen Zaheer, Jai Kumar Chaurasia, Sufian Zaheer","doi":"10.1111/imm.13871","DOIUrl":"https://doi.org/10.1111/imm.13871","url":null,"abstract":"<p><p>Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachel Coulombeau, Claudia Selck, Nicolas Giang, Abdulrahman Al-Mohammad, Natalie Ng, Allison K Maher, Rafael Argüello, Antonio Scalfari, James Varley, Richard Nicholas, Margarita Dominguez-Villar
Inflammatory environments induce the generation of dysfunctional IFNγ+T-bet+FOXP3+ Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.
{"title":"Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling.","authors":"Rachel Coulombeau, Claudia Selck, Nicolas Giang, Abdulrahman Al-Mohammad, Natalie Ng, Allison K Maher, Rafael Argüello, Antonio Scalfari, James Varley, Richard Nicholas, Margarita Dominguez-Villar","doi":"10.1111/imm.13870","DOIUrl":"https://doi.org/10.1111/imm.13870","url":null,"abstract":"<p><p>Inflammatory environments induce the generation of dysfunctional IFNγ<sup>+</sup>T-bet<sup>+</sup>FOXP3<sup>+</sup> Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4+ T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4+ T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4+ T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.
{"title":"RGS10 Deficiency Alleviated Intestinal Mucosal Inflammation Through Suppression of Th1/Th17 Cell Immune Responses in Ulcerative Colitis.","authors":"Yonghong Yang, Yiming Shao, Xizhuang Gao, Zongjing Hu, Yan Wang, Cuimei Ma, Guiyuan Jin, Fengqin Zhu, Guanjun Dong, Guangxi Zhou","doi":"10.1111/imm.13869","DOIUrl":"https://doi.org/10.1111/imm.13869","url":null,"abstract":"<p><p>Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4<sup>+</sup> T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4<sup>+</sup> T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4<sup>+</sup> T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dysfunctional immune regulation contributes to the pathogenesis of food allergy (FA). The mechanism behind regulatory B-cell dysfunction is unclear. CpG has immune regulatory functions. The purpose of this study is to use CpG to recover the immune suppressive functions of B cells in mice with FA. An FA mouse model was created using ovalbumin as the specific antigen. Flow cytometry was used to isolate B cells from the intestinal tissues. The immune regulatory functions of B cells were assessed using immunological approaches. The results showed that the FA response was linked to low IL-10 levels in gut lavage fluids of FA mice. FA mouse intestinal B cells produced lower amounts of IL-10 as compared with B cells isolated from naïve control mice. Impaired immune suppressive functions were observed in B cells isolated from the FA mouse intestine. The inducibility of the Il10 expression in naïve B cells of the intestine of FA mice was defective. The induction of Il10 expression in FA B cells could be restored by CpG through regulating the methylation status of the Cmip promoter. CpG promoted the therapeutic efficacy of allergen specific immunotherapy by restoring the induction of IL-10+ B cells in the intestine. The expression of Il10 in B cells of the FA mouse intestine was impaired. Administration of CpG could restore the expression of Il10 in B cells in the intestine and promote immunotherapy for FA.
免疫调节功能失调是食物过敏(FA)的发病机制之一。调节性 B 细胞功能失调的机制尚不清楚。CpG具有免疫调节功能。本研究的目的是利用 CpG 恢复 FA 小鼠 B 细胞的免疫抑制功能。以卵清蛋白为特异性抗原建立了一个 FA 小鼠模型。使用流式细胞术从肠道组织中分离出 B 细胞。使用免疫学方法评估了 B 细胞的免疫调节功能。结果显示,FA反应与FA小鼠肠道灌洗液中低IL-10水平有关。与分离自天真对照组小鼠的 B 细胞相比,FA 小鼠肠道 B 细胞产生的 IL-10 含量较低。从FA小鼠肠道分离的B细胞的免疫抑制功能受损。在FA小鼠肠道的幼稚B细胞中,Il10表达的诱导性存在缺陷。CpG可以通过调节Cmip启动子的甲基化状态来恢复FA B细胞中Il10的诱导表达。CpG通过恢复肠道中IL-10+ B细胞的诱导,促进了过敏原特异性免疫疗法的疗效。FA小鼠肠道B细胞中Il10的表达受损。服用CpG可恢复肠道B细胞中Il10的表达,促进FA的免疫治疗。
{"title":"The Immune Regulatory Functions in B Cells Are Restored by CpG to Reduce Experimental Food Allergy.","authors":"Qiao Liu, Dong-Hua Bin, Zhuo-Ya Wang, Ke-Ping Peng, Wang Tang, Jing-Weng Huang, Ling-Zhi Xu, Xiang-Yu Wang, Ping-Chang Yang, Gui-Xiang Tian","doi":"10.1111/imm.13868","DOIUrl":"https://doi.org/10.1111/imm.13868","url":null,"abstract":"<p><p>Dysfunctional immune regulation contributes to the pathogenesis of food allergy (FA). The mechanism behind regulatory B-cell dysfunction is unclear. CpG has immune regulatory functions. The purpose of this study is to use CpG to recover the immune suppressive functions of B cells in mice with FA. An FA mouse model was created using ovalbumin as the specific antigen. Flow cytometry was used to isolate B cells from the intestinal tissues. The immune regulatory functions of B cells were assessed using immunological approaches. The results showed that the FA response was linked to low IL-10 levels in gut lavage fluids of FA mice. FA mouse intestinal B cells produced lower amounts of IL-10 as compared with B cells isolated from naïve control mice. Impaired immune suppressive functions were observed in B cells isolated from the FA mouse intestine. The inducibility of the Il10 expression in naïve B cells of the intestine of FA mice was defective. The induction of Il10 expression in FA B cells could be restored by CpG through regulating the methylation status of the Cmip promoter. CpG promoted the therapeutic efficacy of allergen specific immunotherapy by restoring the induction of IL-10<sup>+</sup> B cells in the intestine. The expression of Il10 in B cells of the FA mouse intestine was impaired. Administration of CpG could restore the expression of Il10 in B cells in the intestine and promote immunotherapy for FA.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iivo Hetemäki, T Petteri Arstila, Eliisa Kekäläinen
Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.
由 IKZF2 基因编码的转录因子 Helios 在调节性 T 细胞中发挥着重要作用,它能稳定 T 细胞的抑制表型。Helios 主要在调节性 T 细胞中表达,其表达范围还包括效应 T 细胞、滤泡调节性 T 细胞、B 细胞和先天类淋巴细胞群。最近,我们对因IKZF2变体损伤而导致先天性免疫错误的患者进行了特征描述,并对健康人的淋巴细胞进行了转化研究,从而加深了我们对Helios在控制人类适应性免疫系统中的多方面作用的了解。除了稳定调节性T细胞外,Helios在引导效应T细胞成熟方面的作用研究较少。在缺乏功能性 Helios 的情况下,效应 T 细胞会获得更多的炎症表型,并容易衰老。Helios 的表达缺失会破坏生殖中心反应的调控,通常会导致低丙种球蛋白血症或 B 细胞自身免疫。本综述总结了对小鼠和人类的研究结果,以全面了解转录因子Helios对适应性免疫系统的影响。
{"title":"Helios-Illuminating the way for lymphocyte self-control.","authors":"Iivo Hetemäki, T Petteri Arstila, Eliisa Kekäläinen","doi":"10.1111/imm.13866","DOIUrl":"https://doi.org/10.1111/imm.13866","url":null,"abstract":"<p><p>Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medeea Badii, Valentin Nica, Ancuța R Straton, Brenda Kischkel, Orsolya Gaal, Georgiana Cabău, Viola Klück, Ioana Hotea, Boris Novakovic, Cristina Pamfil, Simona Rednic, Mihai G Netea, Radu A Popp, Leo A B Joosten, Tania O Crișan
Type I interferons (IFN1s) mediate innate responses to microbial stimuli and regulate interleukin (IL)-1 and IL-1 receptor antagonist (Ra) production in human cells. This study explores interferon-stimulated gene (ISG) alterations in the transcriptome of patients with gout and stimulated human primary cells in vitro in relation to serum urate concentrations. Peripheral blood mononuclear cells (PBMCs) and monocytes of patients with gout were primed in vitro with soluble urate, followed by lipopolysaccharide (LPS) stimulation. Separately, PBMCs were stimulated with various toll-like receptor (TLR) ligands. RNA sequencing and IL-1Ra cytokine measurement were performed. STAT1 phosphorylation was assessed in urate-treated monocytes. Cytokine responses to IFN-β were evaluated in PBMCs cultured with or without urate and restimulated with LPS and monosodium urate (MSU) crystals. Transcriptomics revealed suppressed IFN-related signalling pathways in urate-exposed PBMCs or monocytes which was supported by diminishment of phosphorylated STAT1. The stimulation of PBMCs with IFN-β did not modify the urate-induced inflammation. Interestingly, in vivo, serum urate concentrations were inversely correlated to in vitro ISG expression upon stimulations with TLR ligands. These findings support a deficient IFN1 signalling in the presence of elevated serum urate concentrations, which could translate to increased susceptibility to infections.
{"title":"Downregulation of type I interferon signalling pathway by urate in primary human PBMCs.","authors":"Medeea Badii, Valentin Nica, Ancuța R Straton, Brenda Kischkel, Orsolya Gaal, Georgiana Cabău, Viola Klück, Ioana Hotea, Boris Novakovic, Cristina Pamfil, Simona Rednic, Mihai G Netea, Radu A Popp, Leo A B Joosten, Tania O Crișan","doi":"10.1111/imm.13858","DOIUrl":"https://doi.org/10.1111/imm.13858","url":null,"abstract":"<p><p>Type I interferons (IFN1s) mediate innate responses to microbial stimuli and regulate interleukin (IL)-1 and IL-1 receptor antagonist (Ra) production in human cells. This study explores interferon-stimulated gene (ISG) alterations in the transcriptome of patients with gout and stimulated human primary cells in vitro in relation to serum urate concentrations. Peripheral blood mononuclear cells (PBMCs) and monocytes of patients with gout were primed in vitro with soluble urate, followed by lipopolysaccharide (LPS) stimulation. Separately, PBMCs were stimulated with various toll-like receptor (TLR) ligands. RNA sequencing and IL-1Ra cytokine measurement were performed. STAT1 phosphorylation was assessed in urate-treated monocytes. Cytokine responses to IFN-β were evaluated in PBMCs cultured with or without urate and restimulated with LPS and monosodium urate (MSU) crystals. Transcriptomics revealed suppressed IFN-related signalling pathways in urate-exposed PBMCs or monocytes which was supported by diminishment of phosphorylated STAT1. The stimulation of PBMCs with IFN-β did not modify the urate-induced inflammation. Interestingly, in vivo, serum urate concentrations were inversely correlated to in vitro ISG expression upon stimulations with TLR ligands. These findings support a deficient IFN1 signalling in the presence of elevated serum urate concentrations, which could translate to increased susceptibility to infections.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingrong Wang, Jiansheng Lu, Bolin Li, Xiaoyu Liu, Rong Wang, Peng Du, Shuo Yu, Zhixin Yang, Yunzhou Yu
Botulinum neurotoxins (BoNTs), including serotypes A and E, are potent biotoxins known to cause human poisoning. In addition to the critical protective antigen found in the full BoNT molecule, the receptor binding domain (Hc domain), BoNTs also harbour another essential protective antigen-the light chain-translocation domain (L-HN domain). Leveraging these pivotal protective antigens, we genetically engineered a series of inactivated chimeric molecules incorporating L-HN and Hc domains of BoNT/A and E. The structure of these chimeric molecules, mirror BoNT/A and E, but are devoid of enzyme activity. Experimental findings demonstrated that a lead candidate mEL-HN-mAHc harnessing the inactivated protease LCHN/E with the mutated gangliosides binding site Hc/A (mE-mA) elicited robust immune protection against BoNT/A and E simultaneously in a mouse model, requiring low immune dosages and minimal immunisations. Moreover, mE-mA exhibited high protective efficacy against BoNT/A and E in guinea pigs and New Zealand white rabbits, resulting in elevated neutralising antibody titres. Furthermore, mE-mA proved to be a more stable and safer vaccine compared to formaldehyde-inactivated toxoid. Our data underscore the genetically engineered mE-mA as a highly effective bivalent vaccine against BoNT/A and E, paving the way for the development of polyvalent vaccines against biotoxins.
肉毒杆菌神经毒素(BoNTs),包括血清型 A 和 E,是已知可导致人类中毒的强效生物毒素。除了完整 BoNT 分子中的关键保护性抗原--受体结合结构域(Hc 结构域)外,BoNTs 还含有另一个重要的保护性抗原--轻链-转座结构域(L-HN 结构域)。利用这些关键的保护性抗原,我们从基因上设计了一系列灭活的嵌合分子,其中包含 BoNT/A 和 E 的 L-HN 和 Hc 结构域。实验结果表明,候选药物 mEL-HN-mAHc 利用失活的蛋白酶 LCHN/E 和变异的神经节苷脂结合位点 Hc/A(mE-mA),在小鼠模型中同时对 BoNT/A 和 E 产生强大的免疫保护作用,只需较低的免疫剂量和最低限度的免疫接种。此外,mE-mA 对豚鼠和新西兰白兔的 BoNT/A 和 E 具有很高的保护效力,从而导致中和抗体滴度升高。此外,与甲醛灭活的类毒素相比,mE-mA 被证明是一种更稳定、更安全的疫苗。我们的数据强调了基因工程改造的 mE-mA 是一种高效的二价疫苗,可预防 BoNT/A 和 E,为开发多价生物毒素疫苗铺平了道路。
{"title":"New Engineered-Chimeric Botulinum Neurotoxin Mutant Acts as an Effective Bivalent Vaccine Against Botulinum Neurotoxin Serotype A and E.","authors":"Jingrong Wang, Jiansheng Lu, Bolin Li, Xiaoyu Liu, Rong Wang, Peng Du, Shuo Yu, Zhixin Yang, Yunzhou Yu","doi":"10.1111/imm.13867","DOIUrl":"https://doi.org/10.1111/imm.13867","url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs), including serotypes A and E, are potent biotoxins known to cause human poisoning. In addition to the critical protective antigen found in the full BoNT molecule, the receptor binding domain (Hc domain), BoNTs also harbour another essential protective antigen-the light chain-translocation domain (L-HN domain). Leveraging these pivotal protective antigens, we genetically engineered a series of inactivated chimeric molecules incorporating L-HN and Hc domains of BoNT/A and E. The structure of these chimeric molecules, mirror BoNT/A and E, but are devoid of enzyme activity. Experimental findings demonstrated that a lead candidate mEL-HN-mAHc harnessing the inactivated protease LCHN/E with the mutated gangliosides binding site Hc/A (mE-mA) elicited robust immune protection against BoNT/A and E simultaneously in a mouse model, requiring low immune dosages and minimal immunisations. Moreover, mE-mA exhibited high protective efficacy against BoNT/A and E in guinea pigs and New Zealand white rabbits, resulting in elevated neutralising antibody titres. Furthermore, mE-mA proved to be a more stable and safer vaccine compared to formaldehyde-inactivated toxoid. Our data underscore the genetically engineered mE-mA as a highly effective bivalent vaccine against BoNT/A and E, paving the way for the development of polyvalent vaccines against biotoxins.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.
婴儿生命早期的饮食可能会塑造其免疫系统,并对宿主日后的健康产生长期影响。在婴儿出生后的最初几个月里,母乳是婴儿唯一的最佳营养品,促进了母婴之间重要的分子交换。最近的研究发现,一些母亲因素会影响母乳喂养婴儿的结果,包括食物过敏(FA)的风险。迄今为止,积累的数据显示,母乳喂养的婴儿患食物过敏症的风险较低。然而,这一问题仍存在争议,一些研究报告称母乳喂养具有预防过敏的作用,而另一些研究则没有证实母乳喂养具有这种作用,或者即使证实了母乳喂养具有保护作用,也仅限于幼儿期。这些有争议的结果可能归因于母亲的状况,因为这决定了母乳喂养的婴儿所接触到的母乳中的化合物。在本综述中,我们首先详细介绍了母乳中的化合物及其在婴儿 FA 中的作用。然后,我们介绍了导致母乳化合物变化的母体因素,如母体健康状况、母体饮食摄入量和母体食物过敏原摄入量,这些因素随后会影响母乳喂养婴儿的 FA。最后,我们分析了母乳中的这些化合物如何通过母婴传播减轻婴儿的 FA。总之,这些机制主要与母乳中的化合物通过促进婴儿肠道微生物群的定植和免疫系统的发育而产生的协同和直接效应有关。
{"title":"How maternal factors shape the immune system of breastfed infants to alleviate food allergy: A systematic and updated review.","authors":"Yuhong Wu, Bihua Chen, Huan Wu, Jinyan Gao, Xuanyi Meng, Hongbing Chen","doi":"10.1111/imm.13864","DOIUrl":"https://doi.org/10.1111/imm.13864","url":null,"abstract":"<p><p>What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingsheng Cai, Shaoyi Chen, Zheng Liu, Haoran Li, Peiyu Wang, Fan Yang, Yun Li, Kezhong Chen, Ming Sun, Mantang Qiu
The remarkable success of mRNA-based coronavirus 2019 (COVID-19) vaccines has propelled the advancement of nanomedicine, specifically in the realm of RNA technology and nanomaterial delivery systems. Notably, significant strides have been made in the development of RNA-based in vivo chimeric antigen receptor (CAR) therapy. In comparison to the conventional ex vivo CAR therapy, in vivo CAR therapy offers several benefits including simplified preparation, reduced costs, broad applicability and decreased potential for carcinogenic effects. This review summarises the RNA-based CAR constructs in in vivo CAR therapy, discusses the current applications of in vivo delivery vectors and outlines the immune cells edited with CAR molecules. We aim for the conveyed messages to contribute towards the advancement of in vivo CAR application.
基于 mRNA 的冠状病毒 2019(COVID-19)疫苗取得了巨大成功,推动了纳米医学的发展,特别是在 RNA 技术和纳米材料递送系统领域。值得注意的是,基于 RNA 的体内嵌合抗原受体(CAR)疗法的开发取得了重大进展。与传统的体外 CAR 疗法相比,体内 CAR 疗法具有多种优势,包括准备工作简化、成本降低、适用性广以及致癌作用的可能性降低。本综述总结了体内 CAR 疗法中基于 RNA 的 CAR 构建,讨论了体内递送载体的当前应用,并概述了使用 CAR 分子编辑的免疫细胞。我们希望所传达的信息能为推进体内 CAR 应用做出贡献。
{"title":"RNA technology and nanocarriers empowering in vivo chimeric antigen receptor therapy","authors":"Jingsheng Cai, Shaoyi Chen, Zheng Liu, Haoran Li, Peiyu Wang, Fan Yang, Yun Li, Kezhong Chen, Ming Sun, Mantang Qiu","doi":"10.1111/imm.13861","DOIUrl":"10.1111/imm.13861","url":null,"abstract":"<p>The remarkable success of mRNA-based coronavirus 2019 (COVID-19) vaccines has propelled the advancement of nanomedicine, specifically in the realm of RNA technology and nanomaterial delivery systems. Notably, significant strides have been made in the development of RNA-based in vivo chimeric antigen receptor (CAR) therapy. In comparison to the conventional ex vivo CAR therapy, in vivo CAR therapy offers several benefits including simplified preparation, reduced costs, broad applicability and decreased potential for carcinogenic effects. This review summarises the RNA-based CAR constructs in in vivo CAR therapy, discusses the current applications of in vivo delivery vectors and outlines the immune cells edited with CAR molecules. We aim for the conveyed messages to contribute towards the advancement of in vivo CAR application.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}