{"title":"Potassium transporter OsHAK17 may contribute to saline-alkaline tolerant mechanisms in rice (Oryza sativa).","authors":"Mami Nampei, Hiromu Ogi, Tanee Sreewongchai, Sho Nishida, Akihiro Ueda","doi":"10.1007/s10265-024-01529-0","DOIUrl":null,"url":null,"abstract":"<p><p>Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K<sup>+</sup> transporter/high-affinity K<sup>+</sup> transporter/K<sup>+</sup> uptake protein/K<sup>+</sup> transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K<sup>+</sup> uptake under high-Na conditions. These results suggested that SNG has an effective K<sup>+</sup> acquisition system supported by OsHAK17 functioning in saline-alkaline environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"505-520"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01529-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K+ transporter/high-affinity K+ transporter/K+ uptake protein/K+ transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K+ uptake under high-Na conditions. These results suggested that SNG has an effective K+ acquisition system supported by OsHAK17 functioning in saline-alkaline environments.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.