首页 > 最新文献

Journal of Plant Research最新文献

英文 中文
Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species.
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-25 DOI: 10.1007/s10265-024-01598-1
Gabriela Brito Costa, Gustavo Júnio Santos Oliveira, João Paulo Souza

Phenotypic plasticity may allow plant species to cope with environmental variability that influences plant growth and may limit the distribution of a species. The present study investigated the morphophysiology and phenotypic plasticity responses due to light and water variability of young Dimorphandra exaltata plants, an endemic threatened tree from the Atlantic Forest. After emergence, plants were grown in two light conditions: shading (70%) and full sun. At 160 days old, we measured chlorophyll a fluorescence, chlorophyll indices, and biomass allocation. Afterward, the plants were subdivided into two water regimes: irrigation vs suspension of irrigation. At 310 days old, morphophysiological measurements and stem water potential were taken. D. exaltata plants showed higher specific leaf area (SLA, 160 days old) and chlorophyll b (310 days old) under shading. Over time, plants under shading showed a decrease in SLA. Also, there was a decrease in the leaf area ratio in both light treatments and an increase in the phenotypic plasticity index. Even showing morphological adjustments to light and water deficit, the higher biomass allocation to roots at the expense of the aboveground part could impair the growth of young plants in understory areas. The phenotypic plasticity presented by D. exaltata does not guarantee that the species can withstand severe disturbance while maintaining normal development. Therefore, it is important to understand the effects of ecosystem fragmentation and water variation and their impacts on the maintenance of species in their areas of occurrence, especially endangered species such as D. exaltata.

{"title":"Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species.","authors":"Gabriela Brito Costa, Gustavo Júnio Santos Oliveira, João Paulo Souza","doi":"10.1007/s10265-024-01598-1","DOIUrl":"https://doi.org/10.1007/s10265-024-01598-1","url":null,"abstract":"<p><p>Phenotypic plasticity may allow plant species to cope with environmental variability that influences plant growth and may limit the distribution of a species. The present study investigated the morphophysiology and phenotypic plasticity responses due to light and water variability of young Dimorphandra exaltata plants, an endemic threatened tree from the Atlantic Forest. After emergence, plants were grown in two light conditions: shading (70%) and full sun. At 160 days old, we measured chlorophyll a fluorescence, chlorophyll indices, and biomass allocation. Afterward, the plants were subdivided into two water regimes: irrigation vs suspension of irrigation. At 310 days old, morphophysiological measurements and stem water potential were taken. D. exaltata plants showed higher specific leaf area (SLA, 160 days old) and chlorophyll b (310 days old) under shading. Over time, plants under shading showed a decrease in SLA. Also, there was a decrease in the leaf area ratio in both light treatments and an increase in the phenotypic plasticity index. Even showing morphological adjustments to light and water deficit, the higher biomass allocation to roots at the expense of the aboveground part could impair the growth of young plants in understory areas. The phenotypic plasticity presented by D. exaltata does not guarantee that the species can withstand severe disturbance while maintaining normal development. Therefore, it is important to understand the effects of ecosystem fragmentation and water variation and their impacts on the maintenance of species in their areas of occurrence, especially endangered species such as D. exaltata.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves. 探索长日光周期下感染木薯普通花叶病毒(CsCMV)的木薯植株的糖分分配和代谢转变:源叶和汇叶的昼夜变化。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-19 DOI: 10.1007/s10265-024-01595-4
Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez

Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.

木薯普通花叶病毒(CsCMV)是一种损害叶绿体和新陈代谢的壶状病毒,会给木薯作物造成严重的产量损失。作物产量取决于昼夜节律,影响碳分配和生长,糖信号传递也影响光-暗节律。本研究旨在阐明 CsCMV 感染在木薯贮藏根膨大之前对源木薯和沉木薯叶片昼夜碳分配、新陈代谢和防御机制的早期影响。在 CsCMV 感染植株的 24 小时周期(16:8 光周期)内检测了可溶性糖和淀粉浓度。在 ZT6、ZT16 和 ZT24/ZT0 期,分析了一系列基因的表达情况--碳水化合物代谢、SnRK1 活性标记、防御、昼夜节律标记。在 CsCMV 感染的源叶中,ZT6 阶段蔗糖增加,而葡萄糖、果糖和蔗糖在夜间上升。在受感染的叶片中发现,蔗糖与己糖的比率增加,SnRK1 活性标记基因和 PR1 转录物上调,这表明碳代谢的改变与抵御病毒感染的防御反应机制相结合。时钟控制基因 GIGANTEA 在 ZT6 和 ZT24/ZT0 期在感染叶片中的表达量减少,表明与未感染的对照植株相比,昼夜节律相位发生了变化。此外,尽管淀粉含量在 24 小时周期内保持不变,但淀粉动员转录本在 ZT24/ZT0 时下调。在沉降叶中,观察到麦芽糖(ZT6)的瞬时峰值。我们的研究结果表明,CsCMV 扰乱了植物糖代谢和分配的自然节律。蔗糖水平的峰值可能是植物内部日时钟的感染信号,在木薯与 CsCMV 相互作用期间影响植物的反应。
{"title":"Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves.","authors":"Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez","doi":"10.1007/s10265-024-01595-4","DOIUrl":"10.1007/s10265-024-01595-4","url":null,"abstract":"<p><p>Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites. 通过CRISPR-Cas9靶向mRNA剪接位点生成有活力的低倍突变体和无效突变体植物。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-16 DOI: 10.1007/s10265-024-01597-2
Mika Yoshimura, Takashi Ishida

Genetic analysis is important for modern plant molecular biology, and in this regard, the existence of specific mutants is crucial. While genome editing technologies, particularly CRISPR-Cas9, have revolutionized plant molecular biology by enabling precise gene disruption, knockout methods are ineffective for lethal genes, necessitating alternatives like gene knockdown. This study demonstrates the practical generation of a hypomorphic mutant allele, alongside severe null mutant alleles, via the targeting of mRNA splicing sites using CRISPR-Cas9. The Arabidopsis HIGH PLOIDY 2 (HPY2) encodes a yeast NSE2 ortholog, part of the conserved eukaryotic SMC5/6 complex, with SUMO E3 ligase activity essential for cell cycle progression and plant development. Loss-of-function HPY2 mutants exhibit severe dwarfism and seedling lethality, making functional analysis challenging. To overcome these limitations, we created HPY2 knockdown mutants as novel tools to investigate gene function. Of the three mutant alleles, the hpy2-cr1 and hpy2-cr2 mutants resembled the existing severe hpy2-1 allele, both harboring a single base pair insertion in one exon, causing significant root shortening and seedling lethality. In contrast, the hypomorphic mutant hpy2-cr3, which has a five bp deletion at an intron-exon junction, showed relatively longer root growth and survived until the reproductive stage. RT-PCR analysis of hpy2-cr3 revealed atypical mRNAs producing truncated polypeptides that retained some HPY2 function, explaining the milder phenotype. These results establish the successful generation of novel hypomorphic mutant alleles critical for studying the lethal gene HPY2, and demonstrate the usefulness of CRISPR-Cas9 for producing viable hypomorphic mutants for investigating complex genetic interactions.

遗传分析对于现代植物分子生物学非常重要,在这方面,特异性突变体的存在至关重要。虽然基因组编辑技术,特别是 CRISPR-Cas9 技术,通过实现精确的基因破坏,已经彻底改变了植物分子生物学,但基因敲除方法对致死基因无效,因此需要基因敲除等替代方法。本研究展示了通过使用 CRISPR-Cas9 以 mRNA 剪接位点为靶标,实际产生低倍突变等位基因以及严重的空突变等位基因的方法。拟南芥HIGH PLOIDY 2(HPY2)编码酵母NSE2的同源物,是保守的真核生物SMC5/6复合体的一部分,具有细胞周期进展和植物发育所必需的SUMO E3连接酶活性。功能缺失的 HPY2 突变体表现出严重的矮小和幼苗致死性,使得功能分析具有挑战性。为了克服这些限制,我们创建了 HPY2 基因敲除突变体,作为研究基因功能的新工具。在三个突变等位基因中,hpy2-cr1 和 hpy2-cr2 突变体与现有的严重 hpy2-1 等位基因相似,都在一个外显子上有一个单碱基对插入,导致根系明显缩短和幼苗致死。相比之下,在一个内含子与外显子交界处缺失 5 bp 的次态突变体 hpy2-cr3,根系生长相对较长,并能存活到生殖期。对 hpy2-cr3 的 RT-PCR 分析显示,产生截短多肽的非典型 mRNA 保留了 HPY2 的部分功能,这也是表型较轻的原因。这些结果成功地产生了对研究致死基因HPY2至关重要的新型低倍突变等位基因,并证明了CRISPR-Cas9可用于产生可行的低倍突变体,以研究复杂的遗传相互作用。
{"title":"Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites.","authors":"Mika Yoshimura, Takashi Ishida","doi":"10.1007/s10265-024-01597-2","DOIUrl":"https://doi.org/10.1007/s10265-024-01597-2","url":null,"abstract":"<p><p>Genetic analysis is important for modern plant molecular biology, and in this regard, the existence of specific mutants is crucial. While genome editing technologies, particularly CRISPR-Cas9, have revolutionized plant molecular biology by enabling precise gene disruption, knockout methods are ineffective for lethal genes, necessitating alternatives like gene knockdown. This study demonstrates the practical generation of a hypomorphic mutant allele, alongside severe null mutant alleles, via the targeting of mRNA splicing sites using CRISPR-Cas9. The Arabidopsis HIGH PLOIDY 2 (HPY2) encodes a yeast NSE2 ortholog, part of the conserved eukaryotic SMC5/6 complex, with SUMO E3 ligase activity essential for cell cycle progression and plant development. Loss-of-function HPY2 mutants exhibit severe dwarfism and seedling lethality, making functional analysis challenging. To overcome these limitations, we created HPY2 knockdown mutants as novel tools to investigate gene function. Of the three mutant alleles, the hpy2-cr1 and hpy2-cr2 mutants resembled the existing severe hpy2-1 allele, both harboring a single base pair insertion in one exon, causing significant root shortening and seedling lethality. In contrast, the hypomorphic mutant hpy2-cr3, which has a five bp deletion at an intron-exon junction, showed relatively longer root growth and survived until the reproductive stage. RT-PCR analysis of hpy2-cr3 revealed atypical mRNAs producing truncated polypeptides that retained some HPY2 function, explaining the milder phenotype. These results establish the successful generation of novel hypomorphic mutant alleles critical for studying the lethal gene HPY2, and demonstrate the usefulness of CRISPR-Cas9 for producing viable hypomorphic mutants for investigating complex genetic interactions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Identification and functional analysis of the Dof transcription factor genes in sugar beet. 更正:甜菜中 Dof 转录因子基因的鉴定和功能分析。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-14 DOI: 10.1007/s10265-024-01591-8
Yaqing Sun, Yongfeng Zhang, Caiyuan Jian, Tong Wang, Guoli Cao, Ningning Li, Guolong Li, Shaoying Zhang
{"title":"Correction to: Identification and functional analysis of the Dof transcription factor genes in sugar beet.","authors":"Yaqing Sun, Yongfeng Zhang, Caiyuan Jian, Tong Wang, Guoli Cao, Ningning Li, Guolong Li, Shaoying Zhang","doi":"10.1007/s10265-024-01591-8","DOIUrl":"https://doi.org/10.1007/s10265-024-01591-8","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secretory pedicels? Development, morphology, and histochemistry of articulated pedicels in Neotropical Malveae (Malvaceae). 分泌型花梗?新热带锦葵(锦葵科)铰接花梗的发育、形态和组织化学。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-13 DOI: 10.1007/s10265-024-01592-7
Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni

In the Malveae tribe (Malvaceae), the axis supporting the flower has a joint at the upper third. This axis can be considered as an articulated pedicel, peduncle, peduncle-pedicel, or anthopodium. Such disparity in terminology reveals a duality in interpretation since this structure is classified as part of the inflorescence or part of the flower. In an effort to reach a consensus, this study aims to evaluate axes supporting the flowers of species from the Malveae tribe through ontogenetic, morphological, and histochemical analyses, using light microscopy and scanning electron microscopy. Ontogenetic analyses indicated that the axis supporting the flower is an articulated pedicel, which is divided into proximal and distal parts owing to the presence of the constriction (joint). Simultaneously, the articulated pedicel arises from the floral meristem, along with the establishment of the calyx and androecium. As development progresses, we observed frequent abscissions of the floral bud, along with the distal portion of the pedicel, at the joint. After this, the remaining proximal portion of the pedicel becomes secretory, as an extrafloral nectary, often foraged by ants of the genus Wasmannia. Thus, this ontogenetic analysis of the articulated pedicel helps in understanding its functionality and morphological variability, highlighting the importance of standardized terminology since it would lead to conceptual clarity in different studies. Additionally, this study, for the first time, reveals the presence of extrafloral nectaries on articulated pedicels in Malveae, a previously undocumented feature in Malveae and Malvaceae.

在马缨丹科(Malvaceae)中,支撑花朵的轴在上部三分之一处有一个关节。这种轴可以被视为有节的花梗、花序梗、花序梗-花梗或花梗。这种术语上的差异揭示了解释上的双重性,因为这种结构被归类为花序的一部分或花的一部分。为了达成共识,本研究旨在利用光学显微镜和扫描电子显微镜,通过本体发育、形态学和组织化学分析,评估支撑马尔维亚科物种花朵的轴。个体发育分析表明,支撑花的轴是有节花梗,由于缢缩(关节)的存在,花梗分为近端和远端两部分。在花萼和雌雄蕊形成的同时,有节花梗也从花分生组织中产生。随着发育的进行,我们观察到花芽和花梗的远端经常在关节处脱落。之后,剩余的花梗近端部分开始分泌,成为花外蜜腺,经常被黄蜂属蚂蚁觅食。因此,对有节花梗的本体分析有助于了解其功能和形态变异,突出了标准化术语的重要性,因为这将使不同研究的概念更加清晰。此外,本研究还首次揭示了马尔维亚科(Malveae)有节花梗上存在花外蜜腺,这是马尔维亚科(Malveae)和马尔维亚科(Malvaceae)以前未记载的特征。
{"title":"Secretory pedicels? Development, morphology, and histochemistry of articulated pedicels in Neotropical Malveae (Malvaceae).","authors":"Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni","doi":"10.1007/s10265-024-01592-7","DOIUrl":"https://doi.org/10.1007/s10265-024-01592-7","url":null,"abstract":"<p><p>In the Malveae tribe (Malvaceae), the axis supporting the flower has a joint at the upper third. This axis can be considered as an articulated pedicel, peduncle, peduncle-pedicel, or anthopodium. Such disparity in terminology reveals a duality in interpretation since this structure is classified as part of the inflorescence or part of the flower. In an effort to reach a consensus, this study aims to evaluate axes supporting the flowers of species from the Malveae tribe through ontogenetic, morphological, and histochemical analyses, using light microscopy and scanning electron microscopy. Ontogenetic analyses indicated that the axis supporting the flower is an articulated pedicel, which is divided into proximal and distal parts owing to the presence of the constriction (joint). Simultaneously, the articulated pedicel arises from the floral meristem, along with the establishment of the calyx and androecium. As development progresses, we observed frequent abscissions of the floral bud, along with the distal portion of the pedicel, at the joint. After this, the remaining proximal portion of the pedicel becomes secretory, as an extrafloral nectary, often foraged by ants of the genus Wasmannia. Thus, this ontogenetic analysis of the articulated pedicel helps in understanding its functionality and morphological variability, highlighting the importance of standardized terminology since it would lead to conceptual clarity in different studies. Additionally, this study, for the first time, reveals the presence of extrafloral nectaries on articulated pedicels in Malveae, a previously undocumented feature in Malveae and Malvaceae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO2 NPs and biochar. 比较转录组显示,木质素生物合成是调节经二氧化硅氮氧化物和生物炭处理的油菜生长的关键分子途径。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-13 DOI: 10.1007/s10265-024-01590-9
Ziming Wang, Ziyue Wang, Zhaodi Zhang, Qiong Lu, Yikun Sheng, Xiangyuan Song, Ruipeng Huo, Juyuan Wang, Sheng Zhai

Biochar and SiO2 NPs are effective soil conditioners, but the impacts and mechanisms of combined application in oilseed rape are not yet clear. Therefore, an experiment was designed to investigate oilseed rape growth, physiological indexes, and transcriptome sequencing under four treatments: control (CK), Platanus orientalis L. leaf biochar (B), SiO2 NPs (S), and BS. Our results showed that B, S and BS treatments all promoted the root growth, root activity and biomass of oilseed rape, especially the root length and fresh weight in BS, which were increased by 77.48% and 279.07%, respectively. Moreover, the three-dimensional fluorescence spectra of B and BS were similar, and the tyrosine-like substance proportion in B, S and BS increased from 7.8 to 9.4%, 10.2% and 19.5%, respectively. In transcriptome analysis, there were 10,280 differentially expressed genes (DEGs) shared in B and BS, 3431 DEGs shared in S and BS, and 2815 DEGs shared in B, S and BS. We also found that B, S and BS all regulated oilseed rape growth by inducing the lignin biosynthesis and the relevant genes encoding BBE-like, BGL, UDP in the phenylpropanoid biosynthesis pathway. The results provide gene regulation associated with the phenylpropanoid biosynthesis applying the biochar and SiO2 NPs, which can be used to increase biomass.

生物炭和二氧化硅氮氧化物是有效的土壤改良剂,但在油菜中联合应用的影响和机制尚不清楚。因此,我们设计了一项实验来研究油菜在对照(CK)、桔梗叶生物炭(B)、SiO2 NPs(S)和 BS 四种处理下的生长、生理指标和转录组测序。结果表明,B、S 和 BS 处理都促进了油菜根系的生长、根系活性和生物量,尤其是 BS 处理的根长和鲜重分别增加了 77.48% 和 279.07%。此外,B 和 BS 的三维荧光光谱相似,B、S 和 BS 中的类酪氨酸物质比例分别从 7.8%增至 9.4%、10.2% 和 19.5%。在转录组分析中,B和BS共有10280个差异表达基因(DEGs),S和BS共有3431个差异表达基因(DEGs),B、S和BS共有2815个差异表达基因(DEGs)。我们还发现,B、S 和 BS 都通过诱导木质素的生物合成以及苯丙醇类生物合成途径中编码 BBE-like、BGL、UDP 的相关基因来调控油菜的生长。研究结果提供了应用生物炭和二氧化硅氮氧化物进行苯丙类生物合成的相关基因调控,可用于增加生物量。
{"title":"Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO<sub>2</sub> NPs and biochar.","authors":"Ziming Wang, Ziyue Wang, Zhaodi Zhang, Qiong Lu, Yikun Sheng, Xiangyuan Song, Ruipeng Huo, Juyuan Wang, Sheng Zhai","doi":"10.1007/s10265-024-01590-9","DOIUrl":"https://doi.org/10.1007/s10265-024-01590-9","url":null,"abstract":"<p><p>Biochar and SiO<sub>2</sub> NPs are effective soil conditioners, but the impacts and mechanisms of combined application in oilseed rape are not yet clear. Therefore, an experiment was designed to investigate oilseed rape growth, physiological indexes, and transcriptome sequencing under four treatments: control (CK), Platanus orientalis L. leaf biochar (B), SiO<sub>2</sub> NPs (S), and BS. Our results showed that B, S and BS treatments all promoted the root growth, root activity and biomass of oilseed rape, especially the root length and fresh weight in BS, which were increased by 77.48% and 279.07%, respectively. Moreover, the three-dimensional fluorescence spectra of B and BS were similar, and the tyrosine-like substance proportion in B, S and BS increased from 7.8 to 9.4%, 10.2% and 19.5%, respectively. In transcriptome analysis, there were 10,280 differentially expressed genes (DEGs) shared in B and BS, 3431 DEGs shared in S and BS, and 2815 DEGs shared in B, S and BS. We also found that B, S and BS all regulated oilseed rape growth by inducing the lignin biosynthesis and the relevant genes encoding BBE-like, BGL, UDP in the phenylpropanoid biosynthesis pathway. The results provide gene regulation associated with the phenylpropanoid biosynthesis applying the biochar and SiO<sub>2</sub> NPs, which can be used to increase biomass.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the evolution and function of the UMAMIT (USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER) gene family. 对 UMAMIT(USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER)基因家族的进化和功能的新认识。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-12 DOI: 10.1007/s10265-024-01596-3
Chenhao Cao, Xinbao Qiu, Zhongnan Yang, Yue Jin

UMAMIT proteins have been known as key players in amino acid transport. In Arabidopsis, functions of several UMAMITs have been characterized, but their precise mechanism, evolutionary history and functional divergence remain elusive. In this study, we conducted phylogenetic analysis of the UMAMIT gene family across key species in the evolutionary history of plants, ranging from algae to angiosperms. Our findings indicate that UMAMIT proteins underwent a substantial expansion from algae to angiosperms, accompanied by the stabilization of the EamA (the main domain of UMAMIT) structure. Phylogenetic studies suggest that UMAMITs may have originated from green algae and be divided into four subfamilies. These proteins first diversified in bryophytes and subsequently experienced gene duplication events in seed plants. Subfamily I was potentially associated with amino acid transport in seeds. Regarding subcellular localization, UMAMITs were predominantly localized in the plasma membrane and chloroplasts. However, members from clade 8 in subfamily III exhibited specific localization in the tonoplast. These members may have multiple functions, such as plant disease resistance and root development. Furthermore, our protein structure prediction revealed that the four-helix bundle motif is crucial in controlling the UMAMIT switch for exporting amino acid. We hypothesize that the specific amino acids in the amino acid binding region determine the type of amino acids being transported. Additionally, subfamily II contains genes that are specifically expressed in reproductive organs and roots in angiosperms, suggesting neofunctionalization. Our study highlights the evolutionary complexity of UMAMITs and underscores their crucial role in the adaptation and diversification of seed plants.

众所周知,UMAMIT 蛋白是氨基酸转运的关键角色。在拟南芥中,一些 UMAMIT 蛋白的功能已经得到表征,但它们的精确机制、进化历史和功能分化仍然难以捉摸。在本研究中,我们对植物进化史上从藻类到被子植物的关键物种中的 UMAMIT 基因家族进行了系统发育分析。我们的研究结果表明,从藻类到被子植物,UMAMIT 蛋白经历了大幅度的扩展,同时伴随着 EamA(UMAMIT 的主结构域)结构的稳定。系统发育研究表明,UMAMITs 可能起源于绿藻,并可分为四个亚家族。这些蛋白质首先在红藻中发生了分化,随后在种子植物中经历了基因复制事件。I 亚家族可能与种子中的氨基酸转运有关。在亚细胞定位方面,UMAMITs 主要定位在质膜和叶绿体中。不过,亚家族 III 中第 8 支系的成员在色质体中有特异性定位。这些成员可能具有多种功能,如植物抗病和根系发育。此外,我们的蛋白质结构预测显示,四螺旋束图案是控制 UMAMIT 输出氨基酸开关的关键。我们推测,氨基酸结合区的特定氨基酸决定了转运氨基酸的类型。此外,亚家族 II 包含的基因在被子植物的生殖器官和根中有特异性表达,这表明了新功能化。我们的研究凸显了 UMAMITs 在进化过程中的复杂性,并强调了它们在种子植物的适应和多样化过程中的关键作用。
{"title":"New insights into the evolution and function of the UMAMIT (USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER) gene family.","authors":"Chenhao Cao, Xinbao Qiu, Zhongnan Yang, Yue Jin","doi":"10.1007/s10265-024-01596-3","DOIUrl":"https://doi.org/10.1007/s10265-024-01596-3","url":null,"abstract":"<p><p>UMAMIT proteins have been known as key players in amino acid transport. In Arabidopsis, functions of several UMAMITs have been characterized, but their precise mechanism, evolutionary history and functional divergence remain elusive. In this study, we conducted phylogenetic analysis of the UMAMIT gene family across key species in the evolutionary history of plants, ranging from algae to angiosperms. Our findings indicate that UMAMIT proteins underwent a substantial expansion from algae to angiosperms, accompanied by the stabilization of the EamA (the main domain of UMAMIT) structure. Phylogenetic studies suggest that UMAMITs may have originated from green algae and be divided into four subfamilies. These proteins first diversified in bryophytes and subsequently experienced gene duplication events in seed plants. Subfamily I was potentially associated with amino acid transport in seeds. Regarding subcellular localization, UMAMITs were predominantly localized in the plasma membrane and chloroplasts. However, members from clade 8 in subfamily III exhibited specific localization in the tonoplast. These members may have multiple functions, such as plant disease resistance and root development. Furthermore, our protein structure prediction revealed that the four-helix bundle motif is crucial in controlling the UMAMIT switch for exporting amino acid. We hypothesize that the specific amino acids in the amino acid binding region determine the type of amino acids being transported. Additionally, subfamily II contains genes that are specifically expressed in reproductive organs and roots in angiosperms, suggesting neofunctionalization. Our study highlights the evolutionary complexity of UMAMITs and underscores their crucial role in the adaptation and diversification of seed plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why can Palhinhaea cernua (lycophyte) grow closer to fumaroles in highly acidic solfatara fields? 在高酸性的溶岩田中,为什么蕨类植物 Palhinhaea cernua(狼尾草属植物)可以生长在离熔岩更近的地方?
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-11 DOI: 10.1007/s10265-024-01587-4
Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki

Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ15N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO3-N, while P. cernua uses NH4-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH4-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO3-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH4-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.

在日本九州的溶岩田中经常能观察到石蒜科植物石蒜(Palhinhaea cernua)和蕨类植物线形蕨(Dicranopteris linearis),但它们的分布趋势却不尽相同。本研究的目的是从土壤和植物的角度来确定为什么蕨类植物(P. cernua)在靠近热液喷口的地区更多。研究人员采集了 P. cernua 和 D. linearis 以及它们各自生长土壤的样本,并测定了矿物特性,包括各种矿物元素和无机阴离子的浓度以及 δ15N。与线形草相比,P. cernua 能更好地适应 pH 值较低、可溶性铝浓度较高、钙和磷浓度较低的土壤。在 P. cernua 中,观察到嫩枝氮浓度与嫩枝硫浓度和土壤水溶性硫浓度之间存在正相关,这意味着硫参与了 P. cernua 的氮获取。研究结果还表明,D. linearis 主要利用土壤中的 NO3-N,而 P. cernua 则利用 NH4-N。P. cernua 对 NH4-N 的高度偏好通过一项栽培实验得到了证实。线形草更喜欢氮氧化物(NO3-N),分布在离富马隆更远的地方,而蕨麻可能是通过利用 NH4-N 和硫来在索尔法塔拉田里生存的,因为 NH4-N 和硫在富马隆附近含量丰富,来自其他植物物种的竞争极小。
{"title":"Why can Palhinhaea cernua (lycophyte) grow closer to fumaroles in highly acidic solfatara fields?","authors":"Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki","doi":"10.1007/s10265-024-01587-4","DOIUrl":"https://doi.org/10.1007/s10265-024-01587-4","url":null,"abstract":"<p><p>Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ<sup>15</sup>N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO<sub>3</sub>-N, while P. cernua uses NH<sub>4</sub>-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH<sub>4</sub>-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO<sub>3</sub>-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH<sub>4</sub>-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil properties, climate, and topography jointly determine plant community characteristics in marsh wetlands. 土壤特性、气候和地形共同决定了沼泽湿地的植物群落特征。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-08 DOI: 10.1007/s10265-024-01593-6
Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu

Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.

各种环境条件会影响湿地内植物群落的特征。尽管主要环境因子对特定类型湿地生态系统内植物群落特征的影响已被广泛研究,但它们如何调节不同类型沼泽湿地的植物群落仍鲜为人知。我们研究了环境条件如何影响中国东北图们江下游沼泽湿地的植物群落。我们收集并分析了 56 块不同沼泽地(29 块草本沼泽地、14 块灌木沼泽地和 13 块森林沼泽地)的植物群落特征(物种、高度和覆盖率)、土壤理化性质(有机碳、无机氮和硫)以及气候和地形因素(温度、降水和海拔)的数据,以了解这些变量如何与不同沼泽类型的植物群落特征相关联。湿地植物多样性各不相同,草本沼泽、灌木沼泽和森林沼泽的多样性分别最低、中等和最高。气候、地形和土壤特性对植物多样性和生物量有着至关重要的影响。结构方程模型显示,在草本沼泽中,植物生物量主要由土壤和植物多样性决定,气候有间接影响。在灌木沼泽中,土壤、气候和植物多样性直接影响生物量。在森林沼泽中,土壤和植物多样性直接影响生物量,而气候和地形则有间接影响。这些发现凸显了不同沼泽生态系统中环境因素之间复杂的相互作用及其对生物量的影响机制,有助于为沼泽湿地生态系统制定有效的保护和恢复策略。
{"title":"Soil properties, climate, and topography jointly determine plant community characteristics in marsh wetlands.","authors":"Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu","doi":"10.1007/s10265-024-01593-6","DOIUrl":"https://doi.org/10.1007/s10265-024-01593-6","url":null,"abstract":"<p><p>Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical genetics analysis suggests the involvement of Aurora kinase and MAPKs in aluminum-induced malate secretion in Arabidopsis. 化学遗传学分析表明,拟南芥中的极光激酶和 MAPK 参与了铝诱导的苹果酸盐分泌。
IF 2.7 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-06 DOI: 10.1007/s10265-024-01594-5
Liujie Wu, Liuying Lai, Weijun Wu, Yongzhuang Wang, Ganhui Mo, Yuriko Kobayashi, Naohisa Ogo, Hiroyuki Koyama

Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.

化学遗传学是一种多学科研究方法。在本研究中,它被用来筛选能促进拟南芥中铝诱导的苹果酸盐分泌的化合物。抑制 p38 丝裂原活化蛋白激酶(p38 MAPK;LY2228820)能显著增加拟南芥铝激活的苹果酸转运体 1(AtALMT1)和对质子根毒敏感的 1(STOP1)调控基因的转录、这表明 LY2228820 增加了 STOP1 调控基因的早期表达,但不影响 AtSTOP1 的表达。抑制 p38 MAPK(LY2228820)和 Aurora A(MLN8237)会增加铝激活的苹果酸通过 AtALMT1 的转运,这表明 MLN8237 和 LY2228820 都干扰了 AtALMT1 的活性。在使用 LY2228820 和 MLN8237 复合物后,还观察到拟南芥的根伸长率增加。因此,LY2228820 和 MLN8237 可能在减轻铝对根的抑制作用方面发挥了重要作用。
{"title":"Chemical genetics analysis suggests the involvement of Aurora kinase and MAPKs in aluminum-induced malate secretion in Arabidopsis.","authors":"Liujie Wu, Liuying Lai, Weijun Wu, Yongzhuang Wang, Ganhui Mo, Yuriko Kobayashi, Naohisa Ogo, Hiroyuki Koyama","doi":"10.1007/s10265-024-01594-5","DOIUrl":"https://doi.org/10.1007/s10265-024-01594-5","url":null,"abstract":"<p><p>Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Plant Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1