Denervation alters the secretome of myofibers and thereby affects muscle stem cell lineage progression and functionality.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING npj Regenerative Medicine Pub Date : 2024-03-01 DOI:10.1038/s41536-024-00353-3
Henriette Henze, Sören S Hüttner, Philipp Koch, Svenja C Schüler, Marco Groth, Björn von Eyss, Julia von Maltzahn
{"title":"Denervation alters the secretome of myofibers and thereby affects muscle stem cell lineage progression and functionality.","authors":"Henriette Henze, Sören S Hüttner, Philipp Koch, Svenja C Schüler, Marco Groth, Björn von Eyss, Julia von Maltzahn","doi":"10.1038/s41536-024-00353-3","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00353-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去神经支配会改变肌纤维的分泌组,从而影响肌肉干细胞系的发展和功能。
骨骼肌的功能主要取决于神经支配,而骨骼肌的修复则依赖于驻留的肌肉干细胞(MuSCs)。然而,人们对神经支配如何影响肌肉干细胞的特性,进而影响骨骼肌的再生还知之甚少。在这里,我们报告了神经支配的缺失会导致MuSCs早熟活化,同时表达成肌分化的标志物。失去神经支配后,MuSCs 的异常活化伴随着 mRNA 和蛋白质水平的深刻变化。肌肉损伤与神经支配缺失的结合会导致骨骼肌再生受损,包括肌原细胞群的变化以及再生肌纤维的延迟成熟。我们进一步证明,失去神经支配会导致肌纤维及其分泌组发生变化,进而影响造血干细胞的行为。特别是,我们发现从坐骨神经横断的小鼠体内分离出的肌纤维分泌了更多的Osteopontin和转化生长因子β1(Tgfb1)。分泌组的改变导致造血干细胞中早期激活转录因子(如 Junb)及其靶基因的上调。然而,肌纤维在失去神经支配后需要结合不同的分泌因子,才能导致在失去神经支配后观察到的造血干细胞的改变。这些数据表明,失去神经支配首先会影响肌纤维,导致其分泌组发生变化,然后影响间充质干细胞,这突出表明了适当的神经支配对间充质干细胞功能和骨骼肌再生的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
期刊最新文献
Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1