{"title":"Mid-infrared assisted transport at the nano-junction between graphene and a doped-diamond scanning probe","authors":"Tommaso Venanzi , Maria Eleonora Temperini , Leonetta Baldassarre , Michele Ortolani , Valeria Giliberti","doi":"10.1016/j.photonics.2024.101243","DOIUrl":null,"url":null,"abstract":"<div><p>We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101243"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156944102400018X/pdfft?md5=6fed236b94fb15d32d69ca003bce04bb&pid=1-s2.0-S156944102400018X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102400018X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.