Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-02-25 DOI:10.1016/j.elecom.2024.107685
Xin Yang , Guoqiang Li , Yue Zhou , Chongzheng Sun , Lei Bi
{"title":"Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells","authors":"Xin Yang ,&nbsp;Guoqiang Li ,&nbsp;Yue Zhou ,&nbsp;Chongzheng Sun ,&nbsp;Lei Bi","doi":"10.1016/j.elecom.2024.107685","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional Pr<sub>0.5</sub>Sr<sub>0.5</sub>FeO<sub>3</sub> (PSF) cathode is customized with Mn cations to generate the new Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>3</sub> (PSFMn) cathode for proton-conducting solid oxide fuel cells (H-SOFCs). Compared to the PSF oxide, the new PSFMn has a reduced thermal expansion, making it more compatible with electrolytes. Furthermore, Mn-doping enhances oxygen vacancy production in PSF, as revealed by experimental and first-principle calculations. More crucially, doping Mn into PSF improves proton diffusion kinetics, resulting in quicker proton diffusion and surface exchange. As a result, the H-SOFC with the PSFMn cathode achieves an output of 1446 mW cm<sup>−2</sup> at 700 °C, but the PSF cell only achieves fuel cell performance of 1009 mW cm<sup>−2</sup>. The fundamental cause of the increased cell performance is the significantly reduced polarization resistance, implying that using the Mn-doping strategy enhances the cathode kinetics of conventional PSF cathodes for H-SOFC.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107685"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000286/pdfft?md5=a616420830ea67f8c3205fa75eed9aa2&pid=1-s2.0-S1388248124000286-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000286","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional Pr0.5Sr0.5FeO3 (PSF) cathode is customized with Mn cations to generate the new Pr0.5Sr0.5Fe0.9Mn0.1O3 (PSFMn) cathode for proton-conducting solid oxide fuel cells (H-SOFCs). Compared to the PSF oxide, the new PSFMn has a reduced thermal expansion, making it more compatible with electrolytes. Furthermore, Mn-doping enhances oxygen vacancy production in PSF, as revealed by experimental and first-principle calculations. More crucially, doping Mn into PSF improves proton diffusion kinetics, resulting in quicker proton diffusion and surface exchange. As a result, the H-SOFC with the PSFMn cathode achieves an output of 1446 mW cm−2 at 700 °C, but the PSF cell only achieves fuel cell performance of 1009 mW cm−2. The fundamental cause of the increased cell performance is the significantly reduced polarization resistance, implying that using the Mn-doping strategy enhances the cathode kinetics of conventional PSF cathodes for H-SOFC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将含有锰阳离子的 Pr0.5Sr0.5FeO3 氧化物定制为质子传导型固体氧化物燃料电池的阴极
传统的 Pr0.5Sr0.5FeO3(PSF)阴极经过定制后加入了锰阳离子,从而产生了用于质子传导型固体氧化物燃料电池(H-SOFC)的新型 Pr0.5Sr0.5Fe0.9Mn0.1O3 (PSFMn)阴极。与 PSF 氧化物相比,新型 PSFMn 的热膨胀率更低,因此与电解质的相容性更好。此外,实验和第一原理计算显示,掺杂锰可提高 PSF 中氧空位的产生。更重要的是,在 PSF 中掺入锰能改善质子扩散动力学,从而加快质子扩散和表面交换。因此,采用 PSFMn 阴极的 H-SOFC 在 700 °C 时的输出功率达到了 1446 mW cm-2,而 PSF 电池的燃料电池性能仅为 1009 mW cm-2。电池性能提高的根本原因是极化电阻大大降低,这意味着使用掺锰策略提高了用于 H-SOFC 的传统 PSF 阴极的阴极动力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1