Forecasting downside and upside realized volatility: The role of asymmetric information

Q1 Economics, Econometrics and Finance Journal of Economic Asymmetries Pub Date : 2024-02-29 DOI:10.1016/j.jeca.2024.e00357
Daiki Maki
{"title":"Forecasting downside and upside realized volatility: The role of asymmetric information","authors":"Daiki Maki","doi":"10.1016/j.jeca.2024.e00357","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines which asymmetric variables lead to the better forecast performance of downside and upside risks. The models used in this study measure downside and upside risks using realized semivariance. In addition to their past values, the models utilize return, volume, and jump components as asymmetric variables. We apply these models to major exchange-traded funds (ETFs) and show that asymmetric return variables increase the forecast performance of downside and upside risks for all ETFs. For bond, commodity, and crude oil ETFs, asymmetric trading volume variables are also found to be an important factor in better forecast performance. These results indicate that asymmetric information plays an important role in forecasting downside and upside risks, enabling superior risk management and investment strategy formulation.</p></div>","PeriodicalId":38259,"journal":{"name":"Journal of Economic Asymmetries","volume":"29 ","pages":"Article e00357"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Asymmetries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1703494924000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines which asymmetric variables lead to the better forecast performance of downside and upside risks. The models used in this study measure downside and upside risks using realized semivariance. In addition to their past values, the models utilize return, volume, and jump components as asymmetric variables. We apply these models to major exchange-traded funds (ETFs) and show that asymmetric return variables increase the forecast performance of downside and upside risks for all ETFs. For bond, commodity, and crude oil ETFs, asymmetric trading volume variables are also found to be an important factor in better forecast performance. These results indicate that asymmetric information plays an important role in forecasting downside and upside risks, enabling superior risk management and investment strategy formulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测下行和上行已实现波动率:不对称信息的作用
本研究探讨了哪些非对称变量能使下行风险和上行风险的预测效果更好。本研究使用的模型利用已实现半方差来衡量下行和上行风险。除了过去的价值外,模型还利用回报率、成交量和跳空成分作为非对称变量。我们将这些模型应用于主要的交易所交易基金(ETF),结果表明非对称收益变量提高了所有 ETF 的下行和上行风险预测性能。对于债券、商品和原油 ETF,非对称交易量变量也是提高预测性能的一个重要因素。这些结果表明,非对称信息在预测下行和上行风险方面发挥着重要作用,有助于实现卓越的风险管理和投资策略制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Economic Asymmetries
Journal of Economic Asymmetries Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.80
自引率
0.00%
发文量
42
审稿时长
50 days
期刊最新文献
From debt arithmetic to fiscal sustainability and fiscal rules: Taking stock and policy lessons Editorial Board Asymmetric distance and business cycles (ΑDBC): A new understanding of distance in international trade models through the example of Iran's trade corridors The asymmetric impact of leisure externalities on economic growth Investigating the asymmetric effects of financial development on trade performance in Africa: Can digitalization, transport services, and regulatory quality drive the vision 2063?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1