Universal scaling between wave speed and size enables nanoscale high-performance reservoir computing based on propagating spin-waves

Satoshi Iihama, Yuya Koike, Shigemi Mizukami, Natsuhiko Yoshinaga
{"title":"Universal scaling between wave speed and size enables nanoscale high-performance reservoir computing based on propagating spin-waves","authors":"Satoshi Iihama, Yuya Koike, Shigemi Mizukami, Natsuhiko Yoshinaga","doi":"10.1038/s44306-024-00008-5","DOIUrl":null,"url":null,"abstract":"Physical implementation of neuromorphic computing using spintronics technology has attracted recent attention for the future energy-efficient AI at nanoscales. Reservoir computing (RC) is promising for realizing the neuromorphic computing device. By memorizing past input information and its nonlinear transformation, RC can handle sequential data and perform time-series forecasting and speech recognition. However, the current performance of spintronics RC is poor due to the lack of understanding of its mechanism. Here we demonstrate that nanoscale physical RC using propagating spin waves can achieve high computational power comparable with other state-of-art systems. We develop the theory with response functions to understand the mechanism of high performance. The theory clarifies that wave-based RC generates Volterra series of the input through delayed and nonlinear responses. The delay originates from wave propagation. We find that the scaling of system sizes with the propagation speed of spin waves plays a crucial role in achieving high performance.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00008-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00008-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physical implementation of neuromorphic computing using spintronics technology has attracted recent attention for the future energy-efficient AI at nanoscales. Reservoir computing (RC) is promising for realizing the neuromorphic computing device. By memorizing past input information and its nonlinear transformation, RC can handle sequential data and perform time-series forecasting and speech recognition. However, the current performance of spintronics RC is poor due to the lack of understanding of its mechanism. Here we demonstrate that nanoscale physical RC using propagating spin waves can achieve high computational power comparable with other state-of-art systems. We develop the theory with response functions to understand the mechanism of high performance. The theory clarifies that wave-based RC generates Volterra series of the input through delayed and nonlinear responses. The delay originates from wave propagation. We find that the scaling of system sizes with the propagation speed of spin waves plays a crucial role in achieving high performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波速与尺寸之间的普遍缩放使基于传播自旋波的纳米级高性能存储计算成为可能
利用自旋电子学技术实现神经形态计算的物理实现最近引起了人们对未来纳米尺度高能效人工智能的关注。存储计算(RC)在实现神经形态计算设备方面大有可为。通过记忆过去的输入信息及其非线性变换,RC 可以处理连续数据,并执行时间序列预测和语音识别。然而,由于缺乏对其机理的了解,目前自旋电子学 RC 的性能较差。在这里,我们证明了利用传播自旋波的纳米级物理 RC 可以实现与其他先进系统相媲美的高计算能力。我们开发了响应函数理论,以了解高性能的机理。该理论阐明了基于波的 RC 通过延迟和非线性响应生成输入的 Volterra 序列。延迟源于波的传播。我们发现,系统规模与自旋波传播速度的比例关系对实现高性能起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spin-Hall effect in topological materials: evaluating the proper spin current in systems with arbitrary degeneracies Recent progress on controlling spin-orbit torques by materials design Enhanced performance and functionality in spintronic sensors Connecting physics to systems with modular spin-circuits The mysterious magnetic ground state of Ba14MnBi11 is likely self-doped and altermagnetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1