Ni Wang, Ju Chen, Yipeng An, Qingfeng Zhan, Shi-Jing Gong
{"title":"Controllable half-metallicity in MnPX3 monolayer","authors":"Ni Wang, Ju Chen, Yipeng An, Qingfeng Zhan, Shi-Jing Gong","doi":"10.1038/s44306-024-00065-w","DOIUrl":null,"url":null,"abstract":"Modulable electronic and magnetic structures significantly extend the properties and applications of two-dimensional (2D) materials. 2D antiferromagnets (AFM) can even become ferromagnets (FM) by various approaches, which ignites growing research interests in 2D AFM. Through first-principles calculations, we find that the adsorption of Li (electron doping) and F (hole doping) on the surface of MnPSe3 can induce half-metallicity with opposite spin polarizations. The adsorption site, concentration, charge transfer, and the exchange energy are investigated in detail, indicating the robustness of half-metallicity. At the interface of MnPS3/Au(111) heterostructure, we find electrons transfer from Au(111) to MnPS3, forming the Ohmic contact and inducing AFM-FM transition. All our results show that ferromagnetic MnPX3 (X = S and Se) monolayer with half-metallicity can be easily obtained, which may be of great significance in 2D spintronic materials and devices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00065-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00065-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modulable electronic and magnetic structures significantly extend the properties and applications of two-dimensional (2D) materials. 2D antiferromagnets (AFM) can even become ferromagnets (FM) by various approaches, which ignites growing research interests in 2D AFM. Through first-principles calculations, we find that the adsorption of Li (electron doping) and F (hole doping) on the surface of MnPSe3 can induce half-metallicity with opposite spin polarizations. The adsorption site, concentration, charge transfer, and the exchange energy are investigated in detail, indicating the robustness of half-metallicity. At the interface of MnPS3/Au(111) heterostructure, we find electrons transfer from Au(111) to MnPS3, forming the Ohmic contact and inducing AFM-FM transition. All our results show that ferromagnetic MnPX3 (X = S and Se) monolayer with half-metallicity can be easily obtained, which may be of great significance in 2D spintronic materials and devices.