The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2024-02-29 DOI:10.1177/87552930231223995
Morgan P Moschetti, Brad T Aagaard, Sean K Ahdi, Jason Altekruse, Oliver S Boyd, Arthur D Frankel, Julie Herrick, Mark D Petersen, Peter M Powers, Sanaz Rezaeian, Allison M Shumway, James A Smith, William J Stephenson, Eric M Thompson, Kyle B Withers
{"title":"The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States","authors":"Morgan P Moschetti, Brad T Aagaard, Sean K Ahdi, Jason Altekruse, Oliver S Boyd, Arthur D Frankel, Julie Herrick, Mark D Petersen, Peter M Powers, Sanaz Rezaeian, Allison M Shumway, James A Smith, William J Stephenson, Eric M Thompson, Kyle B Withers","doi":"10.1177/87552930231223995","DOIUrl":null,"url":null,"abstract":"We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for shallow, crustal earthquakes in active tectonic regions (i.e. western United States (WUS)) and stable continental regions (i.e. CEUS); and the use of improved models for the site response of deep sedimentary basins in the WUS and CEUS. Site response updates include basin models for the California Great Valley and for the Portland and Tualatin basins, Oregon, as well as long-period basin effects from three-dimensional simulations in the Greater Los Angeles region and in the Seattle basin; in the CEUS, we introduce a broadband (0.01- to 10-s period) amplification model for the effects of the passive-margin basins of the Atlantic and Gulf Coastal Plains. In addition, we summarize progress on implementing rupture directivity models into seismic hazard models, although they are not incorporated in the 2023 NSHM. We implement the ground-motion characterization for the 2023 NSHM in the US Geological Survey’s code for probabilistic seismic hazard analysis, nshmp-haz-v2, and present the sensitivity of hazard to these changes. Hazard calculations indicate widespread effects from adjustments to the CEUS GMMs, from the incorporation of Coastal Plain amplification effects, and from the treatment of shallow-basin and out-of-basin sites in the San Francisco Bay Area and Los Angeles region, as well as locally important changes from subduction-zone GMMs, and from updated and new WUS basins.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930231223995","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for shallow, crustal earthquakes in active tectonic regions (i.e. western United States (WUS)) and stable continental regions (i.e. CEUS); and the use of improved models for the site response of deep sedimentary basins in the WUS and CEUS. Site response updates include basin models for the California Great Valley and for the Portland and Tualatin basins, Oregon, as well as long-period basin effects from three-dimensional simulations in the Greater Los Angeles region and in the Seattle basin; in the CEUS, we introduce a broadband (0.01- to 10-s period) amplification model for the effects of the passive-margin basins of the Atlantic and Gulf Coastal Plains. In addition, we summarize progress on implementing rupture directivity models into seismic hazard models, although they are not incorporated in the 2023 NSHM. We implement the ground-motion characterization for the 2023 NSHM in the US Geological Survey’s code for probabilistic seismic hazard analysis, nshmp-haz-v2, and present the sensitivity of hazard to these changes. Hazard calculations indicate widespread effects from adjustments to the CEUS GMMs, from the incorporation of Coastal Plain amplification effects, and from the treatment of shallow-basin and out-of-basin sites in the San Francisco Bay Area and Los Angeles region, as well as locally important changes from subduction-zone GMMs, and from updated and new WUS basins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2023 年美国国家地震灾害模型:美国大陆地区地动特征描述
我们更新了 2023 年美国大陆地区国家地震危险性模型(NSHM)的地动特征。更新内容包括在卡斯卡迪亚俯冲带使用新的地动模型(GMMs);调整美国中部和东部(CEUS)的地动模型,以减少与观测数据的不匹配;更新地动模型在活跃构造区(即美国西部(WUS))和稳定大陆区(即 CEUS)浅层地壳地震中的应用边界;以及使用改进的模型来计算美国西部和 CEUS 深沉积盆地的场地响应。场地响应更新包括加利福尼亚大峡谷、俄勒冈州波特兰和图拉丁盆地的盆地模型,以及大洛杉矶地区和西雅图盆地三维模拟的长周期盆地效应;在中欧和东欧大陆,我们引入了一个宽带(0.01-10-s 周期)放大模型,用于分析大西洋和海湾沿海平原被动边缘盆地的效应。此外,我们还总结了在地震灾害模型中实施破裂指向性模型的进展情况,尽管这些模型并未纳入《2023 年国家地震危险性评估手册》。我们在美国地质调查局的概率地震危险分析代码 nshmp-haz-v2 中实施了 2023 年国家地震危险性模型的地动特征,并介绍了危险性对这些变化的敏感性。危害计算表明,CEUS GMMs 的调整、沿海平原放大效应的纳入、旧金山湾区和洛杉矶地区浅盆地和盆地外地点的处理,以及俯冲带 GMMs 的局部重要变化、WUS 盆地的更新和新增,都会产生广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Deep-neural-network model for predicting ground motion parameters using earthquake horizontal-to-vertical spectral ratios Ground-motions site and event specificity: Insights from assessing a suite of simulated ground motions in the San Francisco Bay Area Analysis of site-response residuals from empirical ground-motion models to account for observed sedimentary basin effects in Wellington, New Zealand Modeling hospital resources based on global epidemiology after earthquake-related disasters Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1