Daisuke Murakami, Shonosuke Sugasawa, Hajime Seya, Daniel A. Griffith
{"title":"Sub-Model Aggregation for Scalable Eigenvector Spatial Filtering: Application to Spatially Varying Coefficient Modeling","authors":"Daisuke Murakami, Shonosuke Sugasawa, Hajime Seya, Daniel A. Griffith","doi":"10.1111/gean.12393","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a method for aggregating/synthesizing global and local sub-models for fast and flexible spatial regression modeling. Eigenvector spatial filtering (ESF) was used to model spatially varying coefficients and spatial dependence in the residuals by sub-model, while the generalized product-of-experts method was used to aggregate these sub-models. The major advantages of the proposed method are as follows: (i) it is highly scalable for large samples in terms of accuracy and computational efficiency; (ii) it is easily implemented by estimating sub-models independently first and aggregating/averaging them thereafter; and (iii) likelihood-based inference is available because the marginal likelihood is available in closed-form. The accuracy and computational efficiency of the proposed method are confirmed using Monte Carlo simulation experiments. This method was then applied to residential land price analysis in Japan. The results demonstrate the usefulness of this method for improving the interpretability of spatially varying coefficients. The proposed method is implemented in an R package spmoran.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"56 4","pages":"768-798"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12393","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12393","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a method for aggregating/synthesizing global and local sub-models for fast and flexible spatial regression modeling. Eigenvector spatial filtering (ESF) was used to model spatially varying coefficients and spatial dependence in the residuals by sub-model, while the generalized product-of-experts method was used to aggregate these sub-models. The major advantages of the proposed method are as follows: (i) it is highly scalable for large samples in terms of accuracy and computational efficiency; (ii) it is easily implemented by estimating sub-models independently first and aggregating/averaging them thereafter; and (iii) likelihood-based inference is available because the marginal likelihood is available in closed-form. The accuracy and computational efficiency of the proposed method are confirmed using Monte Carlo simulation experiments. This method was then applied to residential land price analysis in Japan. The results demonstrate the usefulness of this method for improving the interpretability of spatially varying coefficients. The proposed method is implemented in an R package spmoran.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.