M. S. Bhaskar, Umashankar Subramaniam, Dhafer Almakhles, Sivakumar Selvam, M. Muhibbullah
{"title":"Multistage converter with reduced switch voltage stress and diode current stress","authors":"M. S. Bhaskar, Umashankar Subramaniam, Dhafer Almakhles, Sivakumar Selvam, M. Muhibbullah","doi":"10.1049/pel2.12677","DOIUrl":null,"url":null,"abstract":"<p>The utilization of switched inductors, involving parallel charging and series discharging of inductors, is extensively embraced in diverse DC–DC converters for attaining high voltage gain; nevertheless, the stress on switch voltage and diode current escalates considerably with an increased count of inductors integrated into the switched inductors network. In the classical multistage switched inductor converter, the switch voltage aligns with the output voltage, and the diode experiences a high current as the number of stages increases. This research recommends a DC–DC multistage converter for energy conversion and high voltage gain with low stress. In this paper, a novel multistage switched inductor converter is introduced and designed to attain higher voltage gain while mitigating the stresses on switch voltage and diode current. The proposed circuit is created by replacing the standard multistage switched inductor converter's possible diodes with power switches. All of the switching devices are connected in such a way that the output voltage and input current are shared by all of the switches and diodes, respectively. As a consequence, the voltage stress on switches and the current stress on diodes are comparatively low, resulting in a high efficiency compared to a typical multistage switched inductor converter. It's interesting to note that the proposed converter and a typical multistage switched inductor converter both require the same amount of components. Different operation modes, analysis, a non-ideal model, and a comparison of the suggested and recently constructed converters are discussed. The effectiveness and performance of the circuit are validated experimentally.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12677","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of switched inductors, involving parallel charging and series discharging of inductors, is extensively embraced in diverse DC–DC converters for attaining high voltage gain; nevertheless, the stress on switch voltage and diode current escalates considerably with an increased count of inductors integrated into the switched inductors network. In the classical multistage switched inductor converter, the switch voltage aligns with the output voltage, and the diode experiences a high current as the number of stages increases. This research recommends a DC–DC multistage converter for energy conversion and high voltage gain with low stress. In this paper, a novel multistage switched inductor converter is introduced and designed to attain higher voltage gain while mitigating the stresses on switch voltage and diode current. The proposed circuit is created by replacing the standard multistage switched inductor converter's possible diodes with power switches. All of the switching devices are connected in such a way that the output voltage and input current are shared by all of the switches and diodes, respectively. As a consequence, the voltage stress on switches and the current stress on diodes are comparatively low, resulting in a high efficiency compared to a typical multistage switched inductor converter. It's interesting to note that the proposed converter and a typical multistage switched inductor converter both require the same amount of components. Different operation modes, analysis, a non-ideal model, and a comparison of the suggested and recently constructed converters are discussed. The effectiveness and performance of the circuit are validated experimentally.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.