Pengfei Wang, Dian Jiao, Leyou Yang, Bin Wang, Ruiyun Yu
{"title":"Hypergraph-based Truth Discovery for Sparse Data in Mobile Crowdsensing","authors":"Pengfei Wang, Dian Jiao, Leyou Yang, Bin Wang, Ruiyun Yu","doi":"10.1145/3649894","DOIUrl":null,"url":null,"abstract":"<p>Mobile crowdsensing leverages the power of a vast group of participants to collect sensory data, thus presenting an economical solution for data collection. However, due to the variability among participants, the quality of sensory data varies significantly, making it crucial to extract truthful information from sensory data of differing quality. Additionally, given the fixed time and monetary costs for the participants, they typically only perform a subset of tasks. As a result, the datasets collected in real-world scenarios are usually sparse. Current truth discovery methods struggle to adapt to datasets with varying sparsity, especially when dealing with sparse datasets. In this paper, we propose an adaptive Hypergraph-based EM truth discovery method, HGEM. The HGEM algorithm leverages the topological characteristics of hypergraphs to model sparse datasets, thereby improving its performance in evaluating the reliability of participants and the true value of the event to be observed. Experiments based on simulated and real-world scenarios demonstrate that HGEM consistently achieves higher predictive accuracy.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"112 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile crowdsensing leverages the power of a vast group of participants to collect sensory data, thus presenting an economical solution for data collection. However, due to the variability among participants, the quality of sensory data varies significantly, making it crucial to extract truthful information from sensory data of differing quality. Additionally, given the fixed time and monetary costs for the participants, they typically only perform a subset of tasks. As a result, the datasets collected in real-world scenarios are usually sparse. Current truth discovery methods struggle to adapt to datasets with varying sparsity, especially when dealing with sparse datasets. In this paper, we propose an adaptive Hypergraph-based EM truth discovery method, HGEM. The HGEM algorithm leverages the topological characteristics of hypergraphs to model sparse datasets, thereby improving its performance in evaluating the reliability of participants and the true value of the event to be observed. Experiments based on simulated and real-world scenarios demonstrate that HGEM consistently achieves higher predictive accuracy.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.