Hypergraph-based Truth Discovery for Sparse Data in Mobile Crowdsensing

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2024-02-28 DOI:10.1145/3649894
Pengfei Wang, Dian Jiao, Leyou Yang, Bin Wang, Ruiyun Yu
{"title":"Hypergraph-based Truth Discovery for Sparse Data in Mobile Crowdsensing","authors":"Pengfei Wang, Dian Jiao, Leyou Yang, Bin Wang, Ruiyun Yu","doi":"10.1145/3649894","DOIUrl":null,"url":null,"abstract":"<p>Mobile crowdsensing leverages the power of a vast group of participants to collect sensory data, thus presenting an economical solution for data collection. However, due to the variability among participants, the quality of sensory data varies significantly, making it crucial to extract truthful information from sensory data of differing quality. Additionally, given the fixed time and monetary costs for the participants, they typically only perform a subset of tasks. As a result, the datasets collected in real-world scenarios are usually sparse. Current truth discovery methods struggle to adapt to datasets with varying sparsity, especially when dealing with sparse datasets. In this paper, we propose an adaptive Hypergraph-based EM truth discovery method, HGEM. The HGEM algorithm leverages the topological characteristics of hypergraphs to model sparse datasets, thereby improving its performance in evaluating the reliability of participants and the true value of the event to be observed. Experiments based on simulated and real-world scenarios demonstrate that HGEM consistently achieves higher predictive accuracy.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"112 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile crowdsensing leverages the power of a vast group of participants to collect sensory data, thus presenting an economical solution for data collection. However, due to the variability among participants, the quality of sensory data varies significantly, making it crucial to extract truthful information from sensory data of differing quality. Additionally, given the fixed time and monetary costs for the participants, they typically only perform a subset of tasks. As a result, the datasets collected in real-world scenarios are usually sparse. Current truth discovery methods struggle to adapt to datasets with varying sparsity, especially when dealing with sparse datasets. In this paper, we propose an adaptive Hypergraph-based EM truth discovery method, HGEM. The HGEM algorithm leverages the topological characteristics of hypergraphs to model sparse datasets, thereby improving its performance in evaluating the reliability of participants and the true value of the event to be observed. Experiments based on simulated and real-world scenarios demonstrate that HGEM consistently achieves higher predictive accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超图的移动人群感应稀疏数据的真相发现
移动众感应利用庞大的参与者群体来收集感官数据,从而为数据收集提供了一种经济的解决方案。然而,由于参与者之间存在差异,感官数据的质量也大不相同,因此从不同质量的感官数据中提取真实信息至关重要。此外,考虑到参与者的固定时间和金钱成本,他们通常只执行部分任务。因此,在现实世界中收集到的数据集通常比较稀少。当前的真相发现方法很难适应不同稀疏度的数据集,尤其是在处理稀疏数据集时。在本文中,我们提出了一种基于超图的自适应 EM 真相发现方法 HGEM。HGEM 算法利用超图的拓扑特性对稀疏数据集进行建模,从而提高了其在评估参与者可靠性和待观察事件真实值方面的性能。基于模拟和真实世界场景的实验证明,HGEM 始终能达到更高的预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1