Quanto Option Pricing on a Multivariate Levy Process Model with a Generative Artificial Intelligence

Young Shin Kim, Hyun-Gyoon Kim
{"title":"Quanto Option Pricing on a Multivariate Levy Process Model with a Generative Artificial Intelligence","authors":"Young Shin Kim, Hyun-Gyoon Kim","doi":"arxiv-2402.17919","DOIUrl":null,"url":null,"abstract":"In this study, we discuss a machine learning technique to price exotic\noptions with two underlying assets based on a non-Gaussian Levy process model.\nWe introduce a new multivariate Levy process model named the generalized normal\ntempered stable (gNTS) process, which is defined by time-changed multivariate\nBrownian motion. Since the probability density function (PDF) of the gNTS\nprocess is not given by a simple analytic formula, we use the conditional\nreal-valued non-volume preserving (CRealNVP) model, which is a sort of\nflow-based generative networks. After that, we discuss the no-arbitrage pricing\non the gNTS model for pricing the quanto option whose underlying assets consist\nof a foreign index and foreign exchange rate. We also present the training of\nthe CRealNVP model to learn the PDF of the gNTS process using a training set\ngenerated by Monte Carlo simulation. Next, we estimate the parameters of the\ngNTS model with the trained CRealNVP model using the empirical data observed in\nthe market. Finally, we provide a method to find an equivalent martingale\nmeasure on the gNTS model and to price the quanto option using the CRealNVP\nmodel with the risk-neutral parameters of the gNTS model.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.17919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we discuss a machine learning technique to price exotic options with two underlying assets based on a non-Gaussian Levy process model. We introduce a new multivariate Levy process model named the generalized normal tempered stable (gNTS) process, which is defined by time-changed multivariate Brownian motion. Since the probability density function (PDF) of the gNTS process is not given by a simple analytic formula, we use the conditional real-valued non-volume preserving (CRealNVP) model, which is a sort of flow-based generative networks. After that, we discuss the no-arbitrage pricing on the gNTS model for pricing the quanto option whose underlying assets consist of a foreign index and foreign exchange rate. We also present the training of the CRealNVP model to learn the PDF of the gNTS process using a training set generated by Monte Carlo simulation. Next, we estimate the parameters of the gNTS model with the trained CRealNVP model using the empirical data observed in the market. Finally, we provide a method to find an equivalent martingale measure on the gNTS model and to price the quanto option using the CRealNVP model with the risk-neutral parameters of the gNTS model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用生成式人工智能对多变量利维过程模型进行广义期权定价
在本研究中,我们讨论了一种基于非高斯李维过程模型的机器学习技术,该技术可为具有两种标的资产的奇异期权定价。我们引入了一种名为广义常温稳定(gNTS)过程的新的多变量李维过程模型,该过程由时间变化的多变量布朗运动定义。由于 gNTS 过程的概率密度函数(PDF)无法用简单的解析公式给出,我们使用了条件实值非体积保持(CRealNVP)模型,这是一种基于低生成网络的模型。然后,我们讨论了在 gNTS 模型上的无套利定价,用于为标的资产由外国指数和外汇汇率组成的量子期权定价。我们还介绍了 CRealNVP 模型的训练方法,利用蒙特卡罗模拟生成的训练集学习 gNTS 过程的 PDF。接下来,我们利用市场上观察到的经验数据,用训练好的 CRealNVP 模型估计 gNTS 模型的参数。最后,我们提供了一种方法,在 gNTS 模型上找到等效的马氏测量,并使用 CRealNVP 模型和 gNTS 模型的风险中性参数为量化期权定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1