A market resilient data-driven approach to option pricing

Anindya Goswami, Nimit Rana
{"title":"A market resilient data-driven approach to option pricing","authors":"Anindya Goswami, Nimit Rana","doi":"arxiv-2409.08205","DOIUrl":null,"url":null,"abstract":"In this paper, we present a data-driven ensemble approach for option price\nprediction whose derivation is based on the no-arbitrage theory of option\npricing. Using the theoretical treatment, we derive a common representation\nspace for achieving domain adaptation. The success of an implementation of this\nidea is shown using some real data. Then we report several experimental results\nfor critically examining the performance of the derived pricing models.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"419 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a data-driven ensemble approach for option price prediction whose derivation is based on the no-arbitrage theory of option pricing. Using the theoretical treatment, we derive a common representation space for achieving domain adaptation. The success of an implementation of this idea is shown using some real data. Then we report several experimental results for critically examining the performance of the derived pricing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
市场弹性数据驱动的期权定价方法
本文基于期权定价的无套利理论,提出了一种数据驱动的期权价格预测集合方法。利用这一理论处理方法,我们推导出了实现领域适应的通用表示空间。我们使用一些真实数据证明了这一想法的成功实施。然后,我们报告了几个实验结果,以严格检验衍生定价模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1