{"title":"Dirac geometry II: coherent cohomology","authors":"Lars Hesselholt, Piotr Pstrągowski","doi":"10.1017/fms.2024.2","DOIUrl":null,"url":null,"abstract":"Dirac rings are commutative algebras in the symmetric monoidal category of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000021_inline1.png\" /> <jats:tex-math> $\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000021_inline2.png\" /> <jats:tex-math> $\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000021_inline3.png\" /> <jats:tex-math> $\\operatorname {MU}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000021_inline4.png\" /> <jats:tex-math> $\\mathbb {F}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dirac rings are commutative algebras in the symmetric monoidal category of $\mathbb {Z}$ -graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger $\infty $ -category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to $\operatorname {MU}$ and $\mathbb {F}_p$ in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.