This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light $cin (c_0, infty )$ , for some threshold $c_0>0$ depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime $crightarrow infty $ and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime $cto infty $ allows us to derive a robust nonlinear energy estimate which holds uniformly in c. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as $cto infty $ .
{"title":"Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics","authors":"Diogo Arsénio, Zineb Hassainia, Haroune Houamed","doi":"10.1017/fms.2024.60","DOIUrl":"https://doi.org/10.1017/fms.2024.60","url":null,"abstract":"This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline1.png\"/> <jats:tex-math> $cin (c_0, infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for some threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline2.png\"/> <jats:tex-math> $c_0>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline3.png\"/> <jats:tex-math> $crightarrow infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline4.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> allows us to derive a robust nonlinear energy estimate which holds uniformly in <jats:italic>c</jats:italic>. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline5.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"114 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline2.png"/> <jats:tex-math> $p geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline3.png"/> <jats:tex-math> $G = {mathrm {SL}}_2(mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline4.png"/> <jats:tex-math> $Xi = {mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline5.png"/> <jats:tex-math> $mathcal {R} subset Xi times Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline6.png"/> <jats:tex-math> ${mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline7.png"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline8.png"/> <jats:tex-math> $Xi /mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline9.png"/> <jats:tex-math> ${mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000379_inline10.png"/> <jats:tex-math> $X
让 $p geq 5$ 是一个素数,让 $G = {mathrm {SL}}_2(mathbb {Q}_p)$ .让 $Xi = {mathrm {Spec}}(Z)$ 表示 G 的亲 p 岩崛-赫克代数的中心 Z 的谱,其系数在特征 p 的域 k 中。让 $mathcal {R} subset Xi times Xi $ 表示 G 的 pro-p Iwahori ${mathrm {Ext}}$ 代数的支持,看作 $(Z,Z)$ 双模块。我们证明了局部环形空间 $Xi /mathcal {R}$ 是一条在 ${mathrm {Spec}}(k)$ 上的投影代数曲线,它有两个连通分量,并且每个连通分量都是一条投影线链。对于 $Xi /mathcal {R}$ 的每个扎里斯基开放子集 U,我们都会为 G 的光滑 k 线性表示范畴构建一个稳定的局部化子范畴 $mathcal {L}_U$ 。
{"title":"Stability in the category of smooth mod-p representations of","authors":"Konstantin Ardakov, Peter Schneider","doi":"10.1017/fms.2024.37","DOIUrl":"https://doi.org/10.1017/fms.2024.37","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline2.png\"/> <jats:tex-math> $p geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline3.png\"/> <jats:tex-math> $G = {mathrm {SL}}_2(mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline4.png\"/> <jats:tex-math> $Xi = {mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline5.png\"/> <jats:tex-math> $mathcal {R} subset Xi times Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline6.png\"/> <jats:tex-math> ${mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline7.png\"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline8.png\"/> <jats:tex-math> $Xi /mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline9.png\"/> <jats:tex-math> ${mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline10.png\"/> <jats:tex-math> $X","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"318 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions $din {1,2,3}$ . We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order $a^drho ^{2+2/d}$ , where a is the p-wave scattering length of the repulsive interaction and $rho $ is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).
我们考虑了在正温度下维数为 $din {1,2,3}$的稀释全自旋极化费米气体。我们证明,相互作用气体的压力自下而上由自由气体的压力加上一个前导阶为 $a^drho ^{2+2/d}$ 的显式项限定,其中 a 是斥性相互作用的 p 波散射长度,$rho $ 是粒子密度。这些结果适用于广泛的斥力相互作用,包括硬核的斥力相互作用,并且在费米温度数量级的温度下是一致的。证明的一个核心要素是对高丁、吉莱斯皮和里普卡(Nucl.A,176.2 (1971),第 237-260 页)。
{"title":"Pressure of a dilute spin-polarized Fermi gas: Lower bound","authors":"Asbjørn Bækgaard Lauritsen, Robert Seiringer","doi":"10.1017/fms.2024.56","DOIUrl":"https://doi.org/10.1017/fms.2024.56","url":null,"abstract":"We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline1.png\"/> <jats:tex-math> $din {1,2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline2.png\"/> <jats:tex-math> $a^drho ^{2+2/d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is the <jats:italic>p</jats:italic>-wave scattering length of the repulsive interaction and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline3.png\"/> <jats:tex-math> $rho $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"25 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku
Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given $mu>0$ , there exists $n_0$ such that the following holds. Every n-vertex Steiner triple system contains all hypertrees with at most $(1-mu )n$ vertices whenever $ngeq n_0$ . We prove this conjecture.
{"title":"A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems","authors":"Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku","doi":"10.1017/fms.2024.34","DOIUrl":"https://doi.org/10.1017/fms.2024.34","url":null,"abstract":"Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline1.png\"/> <jats:tex-math> $mu>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline2.png\"/> <jats:tex-math> $n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Every <jats:italic>n</jats:italic>-vertex Steiner triple system contains all hypertrees with at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline3.png\"/> <jats:tex-math> $(1-mu )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices whenever <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline4.png\"/> <jats:tex-math> $ngeq n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"68 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the growth of the local $L^2$ -norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a poly-logarithmic bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for $mathrm {SL}_n(mathbb {Z}/qmathbb {Z})$ for square-free q, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of $mathrm {SL}_n(mathbb {Z})$ of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.
{"title":"On the local -Bound of the Eisenstein series","authors":"Subhajit Jana, Amitay Kamber","doi":"10.1017/fms.2024.59","DOIUrl":"https://doi.org/10.1017/fms.2024.59","url":null,"abstract":"We study the growth of the local <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline2.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a <jats:italic>poly-logarithmic</jats:italic> bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline3.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z}/qmathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for square-free <jats:italic>q</jats:italic>, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline4.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"10 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants, including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.
{"title":"Flags of sheaves, quivers and symmetric polynomials","authors":"Giulio Bonelli, Nadir Fasola, Alessandro Tanzini","doi":"10.1017/fms.2024.43","DOIUrl":"https://doi.org/10.1017/fms.2024.43","url":null,"abstract":"We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants, including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"5 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević
An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.
{"title":"Persistent transcendental Bézout theorems","authors":"Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević","doi":"10.1017/fms.2024.49","DOIUrl":"https://doi.org/10.1017/fms.2024.49","url":null,"abstract":"An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"405 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Hankel index of a real variety X is an invariant that quantifies the difference between nonnegative quadrics and sums of squares on X. In [5], the authors proved an intriguing bound on the Hankel index in terms of the Green–Lazarsfeld index, which measures the ‘linearity’ of the minimal free resolution of the ideal of X. In all previously known cases, this bound was tight. We provide the first class of examples where the bound is not tight; in fact, the difference between Hankel index and Green–Lazarsfeld index can be arbitrarily large. Our examples are outer projections of rational normal curves, where we identify the center of projection with a binary form F. The Green–Lazarsfeld index of the projected curve is given by the complex Waring border rank of F [16]. We show that the Hankel index is given by the almost real rank of F, which is a new notion that comes from decomposing F as a sum of powers of almost real forms. Finally, we determine the range of possible and typical almost real ranks for binary forms.
在[5]中,作者用格林-拉扎斯菲尔德指数(Green-Lazarsfeld index)证明了关于汉克尔指数的一个有趣的约束,格林-拉扎斯菲尔德指数衡量的是 X 理想的最小自由解的 "线性度"。事实上,汉克尔指数和格林-拉扎斯菲尔德指数之间的差异可以是任意大的。我们的例子是有理法线曲线的外投影,我们用二元形式 F 确定投影中心。投影曲线的格林-拉扎斯菲尔德指数由 F 的复瓦林边界秩给出 [16]。我们证明,汉克尔指数由 F 的近实阶给出,这是将 F 分解为近实形式的幂和后得到的新概念。最后,我们确定了二元形式可能的和典型的近实阶范围。
{"title":"Sums of squares, Hankel index and almost real rank","authors":"Grigoriy Blekherman, Justin Chen, Jaewoo Jung","doi":"10.1017/fms.2024.45","DOIUrl":"https://doi.org/10.1017/fms.2024.45","url":null,"abstract":"The Hankel index of a real variety <jats:italic>X</jats:italic> is an invariant that quantifies the difference between nonnegative quadrics and sums of squares on <jats:italic>X</jats:italic>. In [5], the authors proved an intriguing bound on the Hankel index in terms of the Green–Lazarsfeld index, which measures the ‘linearity’ of the minimal free resolution of the ideal of <jats:italic>X</jats:italic>. In all previously known cases, this bound was tight. We provide the first class of examples where the bound is not tight; in fact, the difference between Hankel index and Green–Lazarsfeld index can be arbitrarily large. Our examples are outer projections of rational normal curves, where we identify the center of projection with a binary form <jats:italic>F</jats:italic>. The Green–Lazarsfeld index of the projected curve is given by the complex Waring border rank of <jats:italic>F</jats:italic> [16]. We show that the Hankel index is given by the <jats:italic>almost real</jats:italic> rank of <jats:italic>F</jats:italic>, which is a new notion that comes from decomposing <jats:italic>F</jats:italic> as a sum of powers of almost real forms. Finally, we determine the range of possible and typical almost real ranks for binary forms.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"44 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline1.png"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a cuspidal, cohomological automorphic representation of an inner form <jats:italic>G</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline2.png"/> <jats:tex-math> $operatorname {{PGL}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a number field <jats:italic>F</jats:italic> of arbitrary signature. Further, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline3.png"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime of <jats:italic>F</jats:italic> such that <jats:italic>G</jats:italic> is split at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline4.png"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the local component <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline5.png"/> <jats:tex-math> $pi _{mathfrak {p}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline6.png"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline7.png"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Steinberg representation. Assuming that the representation is noncritical at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline8.png"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline9.png"/> <jats:tex-math> $mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants for the representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509424000513_inline10.png"/> <jats:tex-m
{"title":"L-invariants for cohomological representations of PGL(2) over arbitrary number fields","authors":"Lennart Gehrmann, Maria Rosaria Pati","doi":"10.1017/fms.2024.51","DOIUrl":"https://doi.org/10.1017/fms.2024.51","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline1.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a cuspidal, cohomological automorphic representation of an inner form <jats:italic>G</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline2.png\"/> <jats:tex-math> $operatorname {{PGL}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a number field <jats:italic>F</jats:italic> of arbitrary signature. Further, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline3.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime of <jats:italic>F</jats:italic> such that <jats:italic>G</jats:italic> is split at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline4.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the local component <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline5.png\"/> <jats:tex-math> $pi _{mathfrak {p}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline6.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline7.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Steinberg representation. Assuming that the representation is noncritical at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline8.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline9.png\"/> <jats:tex-math> $mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants for the representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline10.png\"/> <jats:tex-m","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"36 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}